首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77479篇
  免费   10461篇
  国内免费   7366篇
电工技术   2067篇
技术理论   7篇
综合类   5697篇
化学工业   12692篇
金属工艺   6569篇
机械仪表   3390篇
建筑科学   2332篇
矿业工程   2033篇
能源动力   6019篇
轻工业   3359篇
水利工程   707篇
石油天然气   2437篇
武器工业   2676篇
无线电   10297篇
一般工业技术   11776篇
冶金工业   4213篇
原子能技术   2352篇
自动化技术   16683篇
  2024年   326篇
  2023年   3163篇
  2022年   3570篇
  2021年   4111篇
  2020年   4677篇
  2019年   3862篇
  2018年   3138篇
  2017年   4292篇
  2016年   4616篇
  2015年   4371篇
  2014年   5710篇
  2013年   5693篇
  2012年   6679篇
  2011年   5852篇
  2010年   4641篇
  2009年   4979篇
  2008年   3087篇
  2007年   4593篇
  2006年   4375篇
  2005年   2099篇
  2004年   1018篇
  2003年   1039篇
  2002年   1135篇
  2001年   1067篇
  2000年   837篇
  1999年   877篇
  1998年   485篇
  1997年   330篇
  1996年   432篇
  1995年   402篇
  1994年   346篇
  1993年   338篇
  1992年   312篇
  1991年   292篇
  1990年   248篇
  1989年   219篇
  1988年   326篇
  1987年   726篇
  1986年   696篇
  1985年   165篇
  1984年   16篇
  1983年   10篇
  1982年   15篇
  1981年   16篇
  1980年   17篇
  1979年   13篇
  1976年   3篇
  1959年   58篇
  1951年   34篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
Feng  Wenran  Li  Zhen  Chen  Yingying  Chen  Jinyang  Lang  Haoze  Wan  Jianghong  Gao  Yan  Dong  Haitao 《Journal of Materials Science》2022,57(3):1881-1889
Journal of Materials Science - Although chalcogenide materials continue to generate considerable interest due to great potentials for various optoelectronic devices, annealing for a long time in...  相似文献   
2.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
3.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
4.
High-temperature water electrolysis through solid oxide electrolysis cells (SOEC) will play a key role in building a hydrogen economy in the future. However, the delamination between the air electrode and the electrolyte remains a critical issue to be addressed. Previously, it was hypothesized that Co migration may improve the catalytic activity of the SrZrO3 second phase at the LSCF-YSZ interface, eventually leading to the delamination. In this work, the LSCF-YSZ interfaces sintered at different temperatures were examined in detail. The activation behaviors of the LSCF electrodes upon application with electrolysis current were characterized under different conditions. Further, samples containing purposely added SrZrO3 interlayer with and without cobalt were fabricated and compared. The activation process is less significant for the sample with cobalt-added SrZrO3 interlayer than the sample with pure SrZrO3 layer, supporting the hypothesis that Co migration may lead to the activation behavior.  相似文献   
5.
6.
Compared to liquid/gas hydrogen tank, the pipeline is an economical way for hydrogen transportation. With the quick development of utility tunnel in China, hydrogen pipeline enters the gas compartment can be expected soon. However, all the safety requirements of the gas compartment in the current standards are designed for natural gas, and the applicability for hydrogen is unknown. Therefore, a series of studies were started to investigate the safety of hydrogen in utility tunnel. In this work, a real utility tunnel locates at Shanghai was selected as the physical object. A 3D numerical model was built and successfully validated by a scaled tunnel test. The model has the maximum deviation of +9.5%. After that, a comparatively study of the dispersion behavior of CH4 and H2 was conducted. The assumed scenario was a 20 mm small-hole leaks with gauge pressure of 1.0 MPa in the middle of the tunnel. Numerical results shown that, H2 has a larger dispersion velocity and higher concentration, and is more dangerous compared to CH4. The current emergency ventilation strategy of air change rate of 12 times/h is not effective enough to dilute the H2 flammable cloud. The alarm time of the testing points shown strong linear law. There was a sharp variation in the range of 20%–100% LFL (Lower Flammable Limit), so the alarm strategy in the tunnel standards is too ideal for both CH4 and H2. The numerical results in the present study could provide a guidance for the design and safety management of the hydrogen tunnel.  相似文献   
7.
《Ceramics International》2022,48(12):16808-16812
Flash sintering has been reported in various ceramics. Nevertheless, anion and cation conductors exhibit different flash-sintering behaviors, and the interaction mechanism between the conductive species and the sintering environment has remained unclear. Herein, we report the flash-sintering phenomena of a typical cation conductor, Na3Zr2(SiO4)2(PO4) with anode region surrounded by air and NaNO3 environments. The results prove that the ionic behavior and joule heating distribution can be controlled by changing the electrode environment. Four possible scenarios describing the ion migration behavior and interaction with the environment are proposed for providing a guidance for controlling the ion interaction behavior during flash sintering.  相似文献   
8.
Catalyst samples for CH4 decomposition were prepared from red mud (RM) by an acid-leaching neutralization precipitation approach. Water-washing the resultant precipitates multiple times, followed by drying at 105 °C and calcination at 500 °C, resulted in a threshold of residual Na2O, equivalent to 96% Na2O removal. Drying the precipitate at a higher temperature of 200 °C, followed by repeated water washing, provided a deeper Na2O removal of 99% and made the resultant samples more active for the targeted reaction. Subsequently, four catalyst samples with a simulated red mud composition and NaOH contents from 0 to 0.3 wt% were prepared and the catalytic test results revealed that the Na2O remaining in the RM-derived catalysts did not only inhibit their activation in CH4 but also lower their maximal activities for CH4 decomposition. Finally, two catalysts with the same simulated red mud composition and their Na impregnated respectively on Fe2O3 and a mixture support of Al2O3-SiO2-TiO2 were prepared and tested to explore the effect of Na distribution on the activation behavior of RM-derived catalysts for CH4 decomposition. The activity testing results showed that it was the Na residual dispersed on iron oxides in the RM-derived samples to significantly inhibit the activation of CH4 decomposition.  相似文献   
9.
To the best of our knowledge, this is the first time to report the preparation of a dotted nanowire arrayed by 5 nm sized palladium and nickel composite nanoparticles (denoted as PdxNiy NPs) via a hydrothermal method using NU and PdO·H2O as the starting materials. The samples prepared at the mass ratio of NU to PdO·H2O 1:1, 1:2 and 2:1 were, respectively, nominated as catalyst c1, c2 and c3. The chemical compositions of all synthesized catalysts were mainly studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), revealing that metallic Ni was one main component of all prepared catalysts. Surprisingly, the main diffraction peaks appearing in the XRD patterns of all prepared catalysts were assigned to the metallic Ni rather than the metallic Pd. Very interestingly, as indicated by the TEM images, a large number of dotted nanowires arrayed by numerous equidistant 5 nm sized nanoparticles were distinctly exhibited in catalyst c1. More importantly, when being used as electrocatalysts for EOR, all prepared catalysts exhibited an evident electrocatalytic activity towards EOR. In the cyclic voltammetry (CV) test, the peak current density of the forward peak of EOR on catalyst c1 measured at 50 mV s?1 was as high as 56.1 mA cm?2, being almost 9 times higher than that of EOR on catalyst c3 (6.3 mA cm?2). Particularly, the polarized current density of EOR on catalyst c1 at 3600 s, as indicated by the chronoamperometry (CA) experiment, was still maintained to be around 1.47 mA cm?2, a value higher than the latest reported data of 1.3 mA cm?2 (measured on the pure Pd/C electrode). Presenting a novel method to prepare dotted nanowires arranged by 5 nm sized nanoparticles and showing the significant eletrocatalytic activities of the newly prepared dotted nanowires towards EOR were the major contributions of this preliminary work.  相似文献   
10.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号