首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4031篇
  免费   115篇
  国内免费   237篇
电工技术   36篇
综合类   41篇
化学工业   969篇
金属工艺   400篇
机械仪表   78篇
建筑科学   60篇
矿业工程   44篇
能源动力   549篇
轻工业   98篇
水利工程   16篇
石油天然气   60篇
武器工业   2篇
无线电   165篇
一般工业技术   807篇
冶金工业   157篇
原子能技术   608篇
自动化技术   293篇
  2024年   8篇
  2023年   218篇
  2022年   128篇
  2021年   87篇
  2020年   240篇
  2019年   173篇
  2018年   81篇
  2017年   196篇
  2016年   226篇
  2015年   244篇
  2014年   284篇
  2013年   257篇
  2012年   219篇
  2011年   172篇
  2010年   139篇
  2009年   169篇
  2008年   56篇
  2007年   160篇
  2006年   145篇
  2005年   92篇
  2004年   74篇
  2003年   67篇
  2002年   108篇
  2001年   98篇
  2000年   62篇
  1999年   99篇
  1998年   35篇
  1997年   22篇
  1996年   30篇
  1995年   35篇
  1994年   20篇
  1993年   21篇
  1992年   26篇
  1991年   22篇
  1990年   26篇
  1989年   19篇
  1988年   69篇
  1987年   123篇
  1986年   95篇
  1985年   24篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1975年   2篇
  1974年   1篇
  1959年   3篇
排序方式: 共有4383条查询结果,搜索用时 156 毫秒
1.
To the best of our knowledge, this is the first time to report the preparation of a dotted nanowire arrayed by 5 nm sized palladium and nickel composite nanoparticles (denoted as PdxNiy NPs) via a hydrothermal method using NU and PdO·H2O as the starting materials. The samples prepared at the mass ratio of NU to PdO·H2O 1:1, 1:2 and 2:1 were, respectively, nominated as catalyst c1, c2 and c3. The chemical compositions of all synthesized catalysts were mainly studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), revealing that metallic Ni was one main component of all prepared catalysts. Surprisingly, the main diffraction peaks appearing in the XRD patterns of all prepared catalysts were assigned to the metallic Ni rather than the metallic Pd. Very interestingly, as indicated by the TEM images, a large number of dotted nanowires arrayed by numerous equidistant 5 nm sized nanoparticles were distinctly exhibited in catalyst c1. More importantly, when being used as electrocatalysts for EOR, all prepared catalysts exhibited an evident electrocatalytic activity towards EOR. In the cyclic voltammetry (CV) test, the peak current density of the forward peak of EOR on catalyst c1 measured at 50 mV s?1 was as high as 56.1 mA cm?2, being almost 9 times higher than that of EOR on catalyst c3 (6.3 mA cm?2). Particularly, the polarized current density of EOR on catalyst c1 at 3600 s, as indicated by the chronoamperometry (CA) experiment, was still maintained to be around 1.47 mA cm?2, a value higher than the latest reported data of 1.3 mA cm?2 (measured on the pure Pd/C electrode). Presenting a novel method to prepare dotted nanowires arranged by 5 nm sized nanoparticles and showing the significant eletrocatalytic activities of the newly prepared dotted nanowires towards EOR were the major contributions of this preliminary work.  相似文献   
2.
《Ceramics International》2022,48(12):16730-16736
Recently, all-inorganic cesium lead-halide perovskites have shown their promise for light emission applications, due to the excellent optical performance. Herein, we report that the initially nonphosphorescent undoped lead-halide Cs4PbBr6 single crystals (SCs) exhibit an ultralong phosphorescence emission under X-ray excitation at low temperatures. It is shown that the dramatic change has been taken place in radioluminescence spectra and the broad-band emission gradually appeared with the decrease of temperature. Below 210 K, the radioluminescence spectra can be deconvoluted into one narrow peak located at 530 nm and two broad peaks centered at 595 nm and 672 nm respectively. Subsequently, the time-dependent radioluminescence spectra in undoped lead-halide Cs4PbBr6 SCs were investigated. The ultralong phosphorescence emission can persist over 120 min at 70 K. We consider that ultralong phosphorescence originates from defect-related emission. To the best of our knowledge, our finding is the first time that undoped Cs4PbBr6 SCs exhibit the phosphorescence emission, which will offer a paradigm to motivate revolutionary applications on perovskite.  相似文献   
3.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
4.
Small group detection and tracking in crowd scenes are basis for high level crowd analysis tasks. However, it suffers from the ambiguities in generating proper groups and in handling dynamic changes of group configurations. In this paper, we propose a novel delay decision-making based method for addressing the above problems, motivated by the idea that these ambiguities can be solved using rich temporal context. Specifically, given individual detections, small group hypotheses are generated. Then candidate group hypotheses across consecutive frames and their potential associations are built in a tree. By seeking for the best non-conflicting subset from the hypothesis tree, small groups are determined and simultaneously their trajectories are got. So this framework is called joint detection and tracking. This joint framework reduces the ambiguities in small group decision and tracking by looking ahead for several frames. However, it results in the unmanageable solution space because the number of track hypotheses grows exponentially over time. To solve this problem, effective pruning strategies are developed, which can keep the solution space manageable and also improve the credibility of small groups. Experiments on public datasets demonstrate the effectiveness of our method. The method achieves the state-of-the-art performance even in noisy crowd scenes.  相似文献   
5.
MC nylon-6-b-polyether amine copolymers were prepared with macro-initiator based on amino-terminated polyether amine functionalized with isocyanate via in-situ polymerization. It was found that the introduction of polyether amine delayed the polymerization process of caprolactam by increasing apparent activation energy and pre-exponential factor, resulting in the decrease of molecular weight of nylon-6. The motion of molecular chain of the copolymers was easy because of the decreased hydrogen bonds and weakened inter-molecular forces. The physical entanglement of molecular chains of the copolymers was significant and strong which increased the entanglement density. Only the nylon-6 phase crystallized in the copolymers and the crystal grain size, spherulite size and crystallinity of the copolymers decreased. A small amount of γ crystal formed at high polyether amine content. The copolymers presented obvious strain hardening behavior in stress-strain curves and the loss factor dramatically increased while the glass transition temperature and storage module decreased. The fracture surface of the copolymers became rough and presented hairy structure, indicating that the toughening mechanism of the copolymers corresponded to the multi-layer crack extension mechanism.  相似文献   
6.
Time Domain-Nuclear Magnetic Resonance (TD-NMR) was used here for the first time to analyze potato specimens cut from tubers before and after electroporation. The proton transverse relaxation time, T2, was used to identify the modifications that occur at the cell level involving water molecules mobility in potato tubers after the electroporation treatment. Since electroporation modifies the tissue conductivity, the samples were also analyzed in terms of conductivity, water content, and microscopic morphology of the tissue. Comparison analyses were performed on dried potato (zero water content) and water-potato starch mixtures with different water contents. All the data confirm that the effect of the electroporation process can be identified with a variation of the position of the peaks in T2 distribution, associated to sub-cellular modifications.  相似文献   
7.
Traditional maximum power point tracking (MPPT) methods can hardly find global maximum power point (MPP) because output characteristics curve of photovoltaic (PV) array may have multi local maximum power points in irregular shadow, and thus easily fall into the local maximum power point. To address this drawback, Considering that sliding mode variable structure (SMVS) control strategy have such advantages as simple structure, fast response and strong robustness, and P&O method have the advantages of simple principle and convenient implementation, so a new algorithm combining SMVS control method and P&O method is proposed, besides, PI controller is applied to reduce system chattering caused by switching sliding surface. It is applied to MPPT control of PV array in irregular shadow to solve the problem of multi-peak optimization in partial shadow. In order to verity the rationality of the proposed algorithm, the experimental circuit is built, which achieves MPPT control by means of the proposed algorithm and P&O method. The experimental results show that compared with the traditional P&O algorithm, the proposed algorithm can fast track the global MPP, tracking speed increases by 60% and the relative error decreased by 20%. Moreover, the system becomes more stable near the MPP, the fluctuations of output power is greatly reduced, and thus make full use of solar energy.  相似文献   
8.
A novel synthetic route has been proposed to prepare hausmannite nanoparticles. The synthetic route comprises an iron mediated constant current cathodic electrodeposition of manganite and heat treatment of the latter to obtain hausmannite. The obtained nanostructures have been characterized using X-ray Diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and Fourier transform Infrared Spectrometry (FTIR). The role of iron in the formation of manganite precursor has been studied by cyclic voltammetry (CV) and differential thermal analysis (DTA). A formation mechanism based on iron mediated formation of Mn3+ and subsequent cathodic reduction of the disproportionated products has been proposed accordingly. The prepared nanoparticles exhibited specific capacitance of 143 F g−1 in 0.5 M Na2SO4 solution. The retained specific capacity was 87% after 2000 cycles.  相似文献   
9.
Although Mg alloy possesses high specific strength, low density, and good biocompatibility, poor corrosion resistance hinders its further applications. In the present study, an innovative protective layer against corrosion was prepared on the AZ31 Mg alloy via alkali pretreatment followed by vanillic acid treatment. The alkali pretreatment supplied –OH for the AZ31 Mg alloy surface to react with vanillic acid. The vanillic acid treatment played a crucial role in enhancing the corrosion resistance due to the excellent ability to act as a barrier and retard aqueous solution penetration, which effectively isolated the underlying Mg alloy from the corrosive environment. The corrosion current density of alkali and vanillic acid-treated Mg alloy (AZ31V) almost showed two orders of magnitude lower values in comparison with that of the AZ31 Mg alloy, and the corrosion potential of AZ31V Mg alloy increased from −1.41 to −1.25 V. The immersion tests proved that there was no occurrence of severe corrosion. Hence, the alkali pretreatment and vanillic acid treatment may represent a promising method to improve the corrosion resistance of Mg alloy.  相似文献   
10.
A low-viscosity, fast crosslinking preceramic polymer system was developed as a base for liquid state processing. The system consists of a water-crosslinkable silicone polymer, a latent water source for in situ water generation, and a tin catalyst. While the silicone polymer and the water source can be mixed in any proportion, the catalyst must be added separately to achieve crosslinking at room temperature within a short time. By pyrolysis in inert atmosphere at 1000 °C the system was shown to have a high ceramic yield of ∼54 wt.%. The base system is compatible with alkanes, which makes it suitable for viscosity control when the system is filler-loaded for tailoring of properties. Due to its low viscosity one possible use of the system is in inkjet printing. Further since the crosslinking is rapid it can also be used in the layer by layer manufacturing of ceramic parts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号