首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21393篇
  免费   804篇
  国内免费   474篇
电工技术   191篇
综合类   274篇
化学工业   5916篇
金属工艺   1701篇
机械仪表   380篇
建筑科学   165篇
矿业工程   129篇
能源动力   2694篇
轻工业   325篇
水利工程   48篇
石油天然气   96篇
武器工业   34篇
无线电   2915篇
一般工业技术   4844篇
冶金工业   538篇
原子能技术   513篇
自动化技术   1908篇
  2024年   23篇
  2023年   1498篇
  2022年   653篇
  2021年   599篇
  2020年   1259篇
  2019年   1108篇
  2018年   479篇
  2017年   1456篇
  2016年   1484篇
  2015年   1360篇
  2014年   1556篇
  2013年   1140篇
  2012年   945篇
  2011年   809篇
  2010年   637篇
  2009年   821篇
  2008年   299篇
  2007年   890篇
  2006年   875篇
  2005年   512篇
  2004年   309篇
  2003年   358篇
  2002年   431篇
  2001年   469篇
  2000年   296篇
  1999年   350篇
  1998年   158篇
  1997年   65篇
  1996年   107篇
  1995年   120篇
  1994年   81篇
  1993年   74篇
  1992年   65篇
  1991年   81篇
  1990年   95篇
  1989年   95篇
  1988年   210篇
  1987年   455篇
  1986年   349篇
  1985年   80篇
  1983年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
2.
3.
In recent years, artificial intelligence (AI) is being increasingly utilised in disaster management activities. The public is engaged with AI in various ways in these activities. For instance, crowdsourcing applications developed for disaster management to handle the tasks of collecting data through social media platforms, and increasing disaster awareness through serious gaming applications. Nonetheless, there are limited empirical investigations and understanding on public perceptions concerning AI for disaster management. Bridging this knowledge gap is the justification for this paper. The methodological approach adopted involved: Initially, collecting data through an online survey from residents (n = 605) of three major Australian cities; Then, analysis of the data using statistical modelling. The analysis results revealed that: (a) Younger generations have a greater appreciation of opportunities created by AI-driven applications for disaster management; (b) People with tertiary education have a greater understanding of the benefits of AI in managing the pre- and post-disaster phases, and; (c) Public sector administrative and safety workers, who play a vital role in managing disasters, place a greater value on the contributions by AI in disaster management. The study advocates relevant authorities to consider public perceptions in their efforts in integrating AI in disaster management.  相似文献   
4.
To reduce the energy consumption of the shrimp blanching process and improve the economic value of the blanched product, a transcritical CO2 heat pump blanching system (THPB system) was designed in this paper. The trends of astaxanthin were investigated at atmospheric pressure near boiling temperature, combined with the color and structural properties of shrimp samples, and the optimal blanching times of 270 s and 240 s were obtained at 90°C and 95°C, respectively. In contrast to the fuel blanching system (FB system) at 100°C, the annual standard coal consumption of the THPB system with 90°C blanching is decreased by 79%, and the annual operating cost can be saved by CNY 63,800, with a payback period of about 3.13 years.Industrial relevanceBlanching is one of the effective ways to prolong the shelf life of shrimp. However, the research on the blanching time and temperature of shrimp is not comprehensive. In addition, the traditional fuel blanching process has high energy consumption and pollution, and can no longer meet the quality requirements of the modern food processing industry. Heat pump has been shown to have better performance in food drying, but it is less used in blanching. The information presented in this study may provide other insights into food processing.  相似文献   
5.
《Ceramics International》2022,48(11):15243-15251
Green combustion was used to prepare a ferrite composition of Mg0.4Zn0.6Fe2O4 using a blend of fresh lemon juice as a natural fuel-reductant. Effect of heat treatment on phase, morphological, dielectric, and humidity sensor properties is discussed. The formation of a cubic spinel ferrite has been established by XRD-diffraction and vibrational spectroscopic studies. The experimental lattice parameter ranges from 8.3721 to 8.3631 Å. The broadening of octahedral band (υ2) in the vibrational spectra is an identification for the existence of ferrite nanoparticles in various sizes. The typical crystallite size ranges from 10.2 to 36.9 nm. Using micrographs obtained from field-effect scanning electron microscopy (FESEM), researchers observed a spherical-shaped microstructure with agglomerated nanoparticles. Dielectric investigations have shown that the current ferrite composition has typical dielectric dispersion. The highest reported value for saturation magnetization (Ms) in the present study is 33 emu/g. Magnetic behaviour is primarily influenced by magnetocrystalline anisotropy, cation distribution, and crystallite size. The existence of void spaces in the sintered samples, as well as their porous nature, rendered them suitable for humidity sensor applications. Sintered samples have good sensing capability at 900 °C. The current findings are integrated in terms of cation distribution and magnetocrystalline anisotropy, assuming fine size effects of ferrite nanoparticles.  相似文献   
6.
Recently, the graphite based heterogeneous photocatalysts has attained tremendous research attention in various environmental applications. Among them, the graphitic carbon nitride (g-C3N4) is categorized as a unique solar active particle with its outstanding intrinsic properties i.e., adequate band configuration, excellent light absorptivity and thermo-physical durability, which make it highly useful and reliable for revenue transformation and ecological concerns. Considering the intrinsic potential of g-C3N4 in photocatalysis, so far, no report has been done in literature for its extraordinary configuration, morphological characteristics and perspective tuning for said applications. To overcome this research gap, our primary emphasis of this review regarding photocatalysis is to provide layout as well as the advancement of visible-light-fueled materials as highly stabilized and extremely effective ones for pragmatic implementation. Thus, this existing comprehensive assessment conducts a systematic survey over visible light driven non-metal novel g-C3N4. The major advancement of this evaluation is the fabrication of well-designed nanosized g-C3N4 photocatalysts with unique configurable frameworks and compositions. Furthermore, alternative techniques in order to customize the analogue band configuration and noticeable cultivation such as metal (cation), nonmetal (anion) doping, worthy metal activating, and alloy initiation with certain semiconductors are discussed in detail. In addition to this, g-C3N4 photocatalytic functionalities towards photocatalytic hydrogen evolution, CO2 photoreduction, biological metal ions deterioration as well as bacterial sanitization are also presented and discussed in detail. Therefore, we believe that such a pivotal compact assessment can provide a roadmap in several perspectives on the currently underway obstacles in the innovation of effective g-C3N4 catalytic design processes. Moreover, this critical assessment will ultimately serve as a useful supplement in the research area of g-C3N4 nanosized photocatalysts and for the researchers working on its key aspects in diverse range of natural, chemistry, engineering and environmental applications.  相似文献   
7.
8.
9.
《Ceramics International》2020,46(4):4148-4153
The ferroelectric photovoltaic (FPV) effect obtained in inorganic perovskite ferroelectric materials has received much attention because of its large potential in preparing FPV devices with superior stability, high open-circuit voltage (Voc) and large short-circuit current density (Jsc). In order to obtain suitable thickness for the ferroelectric thin film as light absorption layer, in which, the sunlight can be fully absorbed and the photo-generated electrons and holes are recombined as few as possible, we prepare Pb0.93La0.07(Zr0.6Ti0.4)0.9825O3 (PLZT) ferroelectric thin films with different layer numbers by the sol-gel method and based on these thin films, obtain FPV devices with FTO/PLZT/Au structure. By measuring photovoltaic properties, it is found that the device with 4 layer-PLZT thin film (~300 nm thickness) exhibits the largest Voc and Jsc and the photovoltaic effect obviously depends on the value and direction of the poling electric field. When the device is applied a negative poling electric field, both the Voc and Jsc are significantly higher than those of the device applied the positive poling electric field, due to the depolarization field resulting from the remnant polarization in the same direction with the built-in electric field induced by the Schottky barrier, and the higher the negative poling electric field, the larger the Voc and Jsc. At a -333 kV/cm poling electric field, the FPV device exhibits the most superior photovoltaic properties with a Voc of as high as 0.73 V and Jsc of as large as 2.11 μA/cm2. This work opens a new way for developing ferroelectric photovoltaic devices with good properties.  相似文献   
10.
Small group detection and tracking in crowd scenes are basis for high level crowd analysis tasks. However, it suffers from the ambiguities in generating proper groups and in handling dynamic changes of group configurations. In this paper, we propose a novel delay decision-making based method for addressing the above problems, motivated by the idea that these ambiguities can be solved using rich temporal context. Specifically, given individual detections, small group hypotheses are generated. Then candidate group hypotheses across consecutive frames and their potential associations are built in a tree. By seeking for the best non-conflicting subset from the hypothesis tree, small groups are determined and simultaneously their trajectories are got. So this framework is called joint detection and tracking. This joint framework reduces the ambiguities in small group decision and tracking by looking ahead for several frames. However, it results in the unmanageable solution space because the number of track hypotheses grows exponentially over time. To solve this problem, effective pruning strategies are developed, which can keep the solution space manageable and also improve the credibility of small groups. Experiments on public datasets demonstrate the effectiveness of our method. The method achieves the state-of-the-art performance even in noisy crowd scenes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号