首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   2篇
综合类   1篇
化学工业   7篇
金属工艺   12篇
机械仪表   9篇
建筑科学   5篇
矿业工程   1篇
能源动力   14篇
轻工业   1篇
石油天然气   1篇
武器工业   1篇
无线电   2篇
一般工业技术   58篇
冶金工业   1篇
自动化技术   15篇
  2023年   4篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   13篇
  2014年   14篇
  2013年   6篇
  2012年   10篇
  2011年   4篇
  2010年   11篇
  2009年   9篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有128条查询结果,搜索用时 296 毫秒
1.
Background/purposeMeasurements of strains in critical components are often required in addition to finite element calculations when evaluating a structure.MethodsThis paper describes how standard optical fibers, bonded to the surface or embedded in a laminate, can measure strain fields along the entire length of the fiber, using the optical backscatter reflectometer.ResultsA strain field measurement can be much better compared to simulations than the more common single point measurements with strain gauges or Bragg Gratings. Changes of the strain field can be related to damage development and can be used for structural health monitoring. Practical aspects of using the fibers are also discussed.ConclusionDistributed Fiber-Optic Sensing was successfully embedded and bonded to a composite joint. Adhesive damage was identified and the strain field agreed well with FE-Analysis.  相似文献   
2.
The present study proposes a detection technique for delaminations in a laminated beam. The proposed technique optimizes the spatial distribution of harmonic excitation so as to magnify the difference in response between the delaminated and intact beam. The technique is evaluated by numerical simulation of two-layered aluminum beams. Effects of measurement and geometric noise are included in the analysis. A finite element model for a delaminated composite, based on a layer-wise laminated plate theory is used in conjunction with a step function to simulate delaminations  相似文献   
3.
Shape memory alloy ( SMA) torsion actuator is one of the key approaches realizing adaptive wings in airplanes. In this paper,the actuator is made up of SMA wires and a thin-walled tube,in which the SMA wires are twisted and affixed around the surface of the tube at an angle referenced to the center axis of the tube. A thermo-mechanical constitutive model is developed to predict the thermo-mechanical behaviors of the SMA torsion actuator based on the knowledge of solid mechanics. The relationship between the torsion-angle and tem- perature is numerically calculated by using the thermo-mechanical constitutive model coupled with the SMA phase transformation model developed by Zhou and Yoon. The numerical results are compared with the relative experimental results finished by Xiong and Shen. Influences of the twist-angle of SMA wires and geometrical factors on the primary actuation performances of the SMA torsion actuator are also numerically investigated based on the thermo-mechanical constitutive model coupled with the SMA phase transformation model developed by Zhou and Yoon. Results show that the thermo-mechanical constitutive model can well predict the thermo-mechanical behaviors of the SMA torsion actuator.  相似文献   
4.
A nonlinear three-dimensional finite beam element based on a Hu–Washizu variational formulation is presented. In addition to the standard beam strains, based on kinematic assumptions, further deformation modes are introduced. These additional modes allow for (a) the consideration of a complete three-dimensional stress field, providing an interface for arbitrary three-dimensional material models, and (b) the consideration of cross-section warping, whose shape might shift during the elastic or inelastic deformation. Beside the fact that the resulting finite element formulation is locking free (full Gauss integration in length direction) and remarkable robustness (even for very large load steps), these additional degrees of freedom do not increase the total number of global unknowns of a beam structure. Each element node exhibits the common 3 translational and 3 rotational degrees of freedom. The additional degrees of freedom are eliminated on element level via static condensation. As a consequence, e.g. a bi-moment can not be applied at a free end. This restricts the applicability of the formulation to a class of problems where the influence of the bi-moment is negligible. It is shown that global acting polynomial ansatz functions are not suitable to describe warping of cross-sections with an arbitrary shape. For this reason a new concept based on local ansatz functions is presented. The general criteria to design the warping ansatz functions are discussed in detail. Several examples with moderate thick cross-sections are investigated.  相似文献   
5.
Failure of a ply due to transverse loading is one of the mechanisms that was taken into account in physically-based failure criteria, used in composites design. However, experimental data are scarce and the measurement techniques used in the past are time consuming and involve a lot of specimen handling during testing. While some physical information is currently well consolidated (such as the dependence of the strength on ply thickness, or in situ strength), there still remain relevant open questions. This work presents a methodology, which does not interfere with the tensile test, to detect transverse cracks by optical means. Four different configurations of CFRP are considered. The results show that the in situ strength depends on the thickness of the ply and the orientation of the adjacent layers. In the case of thick transverse plies, the strength is controlled by full-width transverse cracks whereas, in thin plies cracking parallel to the specimen’s mid-plane occurs before transverse matrix cracking.  相似文献   
6.
Large density ratio multiphase flow is a persistent challenge within the field of computational fluid dynamics. This paper investigates improvements to the lattice Boltzmann based large density ratio multicomponent multiphase pseudo-potential model. The improvements include: the multiple-relaxation-time (MRT) collision operator; the exact difference method scheme; the Carnahan-Starling equation of state; and an addition of correction factor k to the equation of state. The improved model can be used for simulating large density ratio (O(1000)) multiphase flow with small spurious current and better numerical stability. The smaller spurious current can be obtained by decreasing k value, and yet interface thickness increases. The density ratio is 1284 for k = 0.1 and the spurious current is reduced to 0.0069, which is much smaller than that of 0.033 in literature. The interfacial tension can be adjusted independently from density ratio by changing k value. A thermal multiphase flow model is developed based on the large density ratio pseudo-potential model. The model is validated by using static heat conduction and dynamic flow simulations. The result of the static heat conduction of the flat interface has smaller error with the theoretical solution than that of droplet. The result of thermocapillary migration is comparable with the theoretical prediction. Finally, the heat conduction melting is simulated by coupling the enthalpy-based method.  相似文献   
7.
This study deals with parametric effects on bucking behaviors of laminated composite structures containing an embedded rectangular delamination using the enhanced assumed strain (EAS) three-dimensional element. The three-dimensional finite element (FE) formulation based on the EAS method for composite structures shows excellence from the standpoints of computational efficiency, especially for distorted element shapes. Using the EAS FE formulation developed for this study, the effects of embedded delamination sizes and ply orientations on the elastic buckling behaviors for various aspect ratios and width-to-thickness ratios are studied. The numerical results obtained are in good agreement with those reported by other investigators. Furthermore, the new results reported in this paper show the progression of local buckling and its influence on global buckling and vice versa. Key observation points are discussed and a brief design guideline is given.  相似文献   
8.
In order to observe the influence of strontium (Sr) modification and hot isostatic pressing (HIP) on an aluminum–silicon cast alloy A357 (AlSi7Mg0.6), the microstructure and the high cycle fatigue behavior of three batches of materials produced by investment casting (IC) were studied. The parts were produced by an advanced IC proprietary process. The main process innovation is to increase the solidification and cooling rate by immersing the mold in cool liquid. Its advantage is to produce finer microstructures. Microstructural characterization showed a dendrite arm spacing (DAS) refinement of 40% when compared with the same part produced by conventional investment casting. Fatigue tests were conducted on hourglass specimens heat treated to T6, under a stress ratio of R = 0.1 and a frequency of 25 Hz. One batch of material was unmodified but two batches were modified with 0.007% and 0.013% Sr addition, from which one batch was submitted to HIP after casting. Results reported in SN diagrams show that the addition of Sr and the HIP process improve the 106 cycles fatigue strength by 9% and 34% respectively. Scanning electron microscopy (SEM) observation of the fracture surfaces showed a variety of crack initiation mechanisms. In the unmodified alloy, decohesion between the coarse Si particles and the aluminum matrix was mostly observed. On the other hand, in the modified but non HIP-ed alloy, cracks initiated from pores. When the same alloy was subjected to HIP, a competition between crystallographic crack initiations (at persistent slip bands) and decohesion/failure of intermetallic phases was observed. When compared to fatigue strength reported for components produced by permanent mold casting, the studied material are more resistant to fatigue even in the unmodified and non HIP-ed states.  相似文献   
9.
In this paper, two silicon nitride layers with thickness, 0.2 and 0.4 μm, are coated onto single crystal silicon (SCS) in order to achieve Si3N4/Si cantilever microbeams. The effect of LPCVD silicon nitride surface coatings on fatigue properties of SCS cantilever microbeams is investigated. Fatigue testing is conducted at both 40 Hz and 100 Hz. Typical S–N (strain amplitude–fatigue cycle) curves of the beams are achieved and correlated fatigue failure modes are investigated. It is found that thinner Si3N4 coating of 0.2 μm results in better fatigue lives of Si3N4/Si beams than thicker Si3N4 coating of 0.4 μm. Both thinner and thicker coated beams have major fatigue crack planes along {1 1 1} planes; however, thicker coated beams possess specific failure mode of delamination, which is not found in thinner coated beams. Delamination reduces the reinforcing effect of thicker Si3N4 coating and leads to its shorter fatigue life. For thicker coated beams, fatigue life at 100 Hz is longer than that at 40 Hz. The mechanism for delamination and the effect of cyclic frequency is investigated, and factors for better fatigue life are proposed.  相似文献   
10.
Automatic face recognition is a widely used biometric identification method, since it is based on standard video surveillance systems and does not require the collaboration of the person to be recognised. The recognition process involves decisions based on the face measurement results. The reliability and robustness of the recognition procedure are critical factors, strongly affected by influence quantities, such as face-camera relative orientation and position, illumination and expression. To improve performance it makes sense to imitate the recognition process in humans, who succeed in recognising faces even from poor quality images. It is therefore interesting to investigate the perception of similarity between faces, with the aim of gaining insight into the process of human face recognition. We report on an investigation that has been carried out by original methods developed in our laboratory for the direct measurement of perceptual quantities. Such methods have been implemented for two complementary recognition procedures, based either on the global appearance of a face or on the detection of specific repere points.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号