首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8481篇
  免费   530篇
  国内免费   349篇
电工技术   184篇
综合类   118篇
化学工业   2256篇
金属工艺   385篇
机械仪表   237篇
建筑科学   42篇
矿业工程   42篇
能源动力   820篇
轻工业   150篇
水利工程   9篇
石油天然气   28篇
武器工业   8篇
无线电   1847篇
一般工业技术   1406篇
冶金工业   154篇
原子能技术   78篇
自动化技术   1596篇
  2024年   20篇
  2023年   869篇
  2022年   434篇
  2021年   444篇
  2020年   625篇
  2019年   437篇
  2018年   332篇
  2017年   764篇
  2016年   726篇
  2015年   579篇
  2014年   640篇
  2013年   453篇
  2012年   390篇
  2011年   351篇
  2010年   243篇
  2009年   250篇
  2008年   125篇
  2007年   257篇
  2006年   299篇
  2005年   121篇
  2004年   69篇
  2003年   89篇
  2002年   107篇
  2001年   98篇
  2000年   76篇
  1999年   96篇
  1998年   31篇
  1997年   15篇
  1996年   21篇
  1995年   27篇
  1994年   23篇
  1993年   22篇
  1992年   22篇
  1991年   30篇
  1990年   14篇
  1989年   22篇
  1988年   41篇
  1987年   102篇
  1986年   79篇
  1985年   16篇
  1982年   1篇
排序方式: 共有9360条查询结果,搜索用时 234 毫秒
1.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
2.
《Ceramics International》2021,47(23):32747-32755
To investigate the nonstoichiometric effect of (Bi0.5Na0.5)TiO3 (BNT) ceramics on their properties, we propose a novel chemical expression, (Bi0.5+xNa0.5−3x)TiO3. The nonstoichiometric effect of BNT can be explored in compounds with this composition without being hampered by the charge imbalance problem. With x ranging from −0.02 to 0.02, we find that the morphological, dielectric, ferroelectric, and electrostrain properties differ considerably between Na-rich and Bi-rich ceramic samples. The average grain size (AGS) increased significantly in Na-rich samples compared to that in stoichiometric BNT, while it decreased slightly in Bi-rich samples. The dielectric characteristics measured from 30 °C to 500 °C indicate that conductivity is activated in Na-rich nonstoichiometric samples but is effectively suppressed in Bi-rich nonstoichiometric samples. The ferroelectric properties also show the same trend. In Na-rich samples, elliptical polarization against electric field (P-E) hysteresis loops were detected, indicating a conductive character induced by high electric field loading. However, saturated P-E loops are observed in Bi-rich samples with well-inhibited conductivity. Furthermore, compared to stoichiometric BNT and nonstoichiometric x = 0.02 Bi-rich samples, (Bi0.5+xNa0.5−3x)TiO3 samples with x = 0.01 exhibit higher electrostrain from 30 °C to 150 °C. Based on the assumption of charge balance, our findings indicated that the presence of 1 mol% excess Bi would facilitate significant improvement in the dielectric, ferroelectric, and electrostrain properties of BNT and BNT-based systems.  相似文献   
3.
Energy bands, effective mass of carriers, absolute band edge positions and optical properties of tetragonal AgInS2 were calculated using a first-principles approach with the exchange correlation described by B3LYP hybrid functional. The results indicate that tetragonal AgInS2 has a direct band gap of 1.93 eV, which reproduce well experimental value. Calculated effective masses of electrons and holes are both small which are beneficial to separation and migration of electron and hole pairs. This implies that AgInS2 has good photocatalytic performance. The calculated optical characteristics indicate that AgInS2 has a slight anisotropy for both the real and imaginary parts of the dielectric function and exhibits large optical absorption in the visible light region. Furthermore, the calculated band edge positions in (100), (010) and (001) surfaces indicate that tetragonal AgInS2 is beneficial to the reduction and oxidation of water to hydrogen and oxygen under visible light irradiation.  相似文献   
4.
The metal grid and reduced graphene oxide (RGO) are both promising transparent conductive materials for replacing the indium tin oxide (ITO) in flexible optoelectronics. However, the large empty area that exists in the grid together with the relatively high sheet resistance of RGO hinder both the materials for practical applications. In this work, we report for the first time a novel strategy for efficient combination of the metal grid and RGO by using a newly developed room-temperature reduction technique. The obtained RGO/metal grid hybrid films not only overcome the shortcomings of individual components but exhibit enhanced optical and electrical performances (Rs = 18 Ω sq−1 and T = 80%) and excellent flexural endurance. With this hybrid film as the window electrode, a highly flexible electrochromic device with excellent stability and ultra-fast response shorter than 60 ms has been successfully fabricated. Considering its high efficiency, high quality, low cost and large area, the strategy would be particularly useful for economically fabricating various metal grid/RGO films which are quite promising high performance transparent and conductive materials for next generation optoelectronic devices.  相似文献   
5.
Three novel organic dyes adopting fully-fused coplanar heteroarene as the donor moieties end-capped with two cyanoacrylic acids as acceptors and anchoring groups have been synthesized, characterized, and used as the sensitizers for dye-sensitized solar cells (DSSCs). The photophysical and electrochemical properties of the novel dyes and the characteristics of the DSSCs based on the novel organic dyes were investigated. The incorporation of the coplanar cores with electron-donating N-bridges are beneficial for the better intramolecular charge transfer (ICT), giving these new dyes good light-harvesting capability. The LUMO energy levels of these coplanar heteroacene-based dyes are sufficiently high for the efficient electron injection to TiO2 upon photo-excitation, while the suitable HOMOs allow the regeneration of oxidized dyes with the electrolyte redox (I/I3). The structural features of the coplanar cores (penta vs. hexa heteroarene) as well as the alkyl substitutions play crucial roles in governing the physical properties and device performance. Among these three novel organic sensitizers, the EHTt dye composed of a fully fused hexa-arene core and less bulky N-alkyl groups caused the DSSC to show the best photovoltaic performance with an open-circuit voltage (VOC) of 0.58 V, a short-circuit photocurrent density (JSC) of 13.72 mA/cm2, and a fill factor (FF) of 0.69, yielding an overall power conversion efficiency (PCE) of 5.52% under AM 1.5G solar irradiation.  相似文献   
6.
In this paper, a model taking into account the effects of carrier loss mechanisms has been developed. The model simulates the photovoltaic properties of the graphene/n-type silicon Schottky barrier solar cells (G/n-Si_SBSC), and it can reproduce the experimentally determined parameters of the G/n-Si_SBSC. To overcome the low efficiencies of G/n-Si_SBSC, their performances have been optimized by modifying the work function of graphene and Si properties, accounted for variation of its thickness and doping level. The obtained results show that the work function of graphene has the major impact on the device performance. Also, the temperature dependence of the G/n-Si_SBSC performance is investigated.  相似文献   
7.
《Ceramics International》2015,41(7):8768-8772
Neodymium doped bismuth ferrite (BiFeO3, BFO) nanoparticles were successfully synthesized by a facile sol–gel route. The influence of annealing temperature, time, Bi content and solvent on the crystal structure of BFO was studied. Results indicated that the optimum processing condition of BFO products was 550–600 °C/1.5 h with excess 3–6% Bi and ethylene glycol as solvent. On the other hand, Nd3+ ion was introduced into the BFO system and the effect of Nd3+ concentration on the structure, magnetic and dielectric properties of BFO were investigated. It was found that the magnetization of BFO was enhanced significantly with Nd3+ substitution, being attributed to the suppression of the spiral cycloidal magnetic structure led by the crystal structure transition. Furthermore, with increasing Nd3+ content, the dielectric constant was found to decrease while the dielectric loss was enhanced, which was mainly due to the hoping conduction mechanism with the reduction of oxygen vacancies.  相似文献   
8.
Though modeling and verifying Multi-Agent Systems (MASs) have long been under study, there are still challenges when many different aspects need to be considered simultaneously. In fact, various frameworks have been carried out for modeling and verifying MASs with respect to knowledge and social commitments independently. However, considering them under the same framework still needs further investigation, particularly from the verification perspective. In this article, we present a new technique for model checking the logic of knowledge and commitments (CTLKC+). The proposed technique is fully-automatic and reduction-based in which we transform the problem of model checking CTLKC+ into the problem of model checking an existing logic of action called ARCTL. Concretely, we construct a set of transformation rules to formally reduce the CTLKC+ model into an ARCTL model and CTLKC+ formulae into ARCTL formulae to get benefit from the extended version of NuSMV symbolic model checker of ARCTL. Compared to a recent approach that reduces the problem of model checking CTLKC+ to another logic of action called GCTL1, our technique has better scalability and efficiency. We also analyze the complexity of the proposed model checking technique. The results of this analysis reveal that the complexity of our reduction-based procedure is PSPACE-complete for local concurrent programs with respect to the size of these programs and the length of the formula being checked. From the time perspective, we prove that the complexity of the proposed approach is P-complete with regard to the size of the model and length of the formula, which makes it efficient. Finally, we implement our model checking approach on top of extended NuSMV and report verification results for the verification of the NetBill protocol, taken from business domain, against some desirable properties. The obtained results show the effectiveness of our model checking approach when the system scales up.  相似文献   
9.
We report a simple route to synthesize iron carbide/carbon yolk–shell composite via a facile two-step process including polymerization of pyrrole using Fe3O4 as a sacrificial template to form a Fe3O4/polypyrrole composite, followed by annealing at high temperature in N2 atmosphere. The yolk–shell composite, with iron carbide (Fe2.5C) embedded in nitrogen-doped carbon layers, shows impressively high catalytic activity and stability for oxygen reduction reaction in alkaline solution. Both the pyridinic-N and graphic-N in the shell of Fe3O4–PPy-700, together with the Fe2.5C confined in carbon layers are believed to be the active sites for the ORR.  相似文献   
10.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号