首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
综合类   2篇
化学工业   15篇
金属工艺   3篇
机械仪表   2篇
能源动力   18篇
无线电   1篇
一般工业技术   7篇
冶金工业   1篇
自动化技术   1篇
  2023年   4篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   13篇
  2018年   5篇
  2017年   7篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1991年   1篇
  1987年   1篇
排序方式: 共有50条查询结果,搜索用时 230 毫秒
1.
In this study, a multi-tubular thermally coupled packed bed reactor in which simultaneous production of ammonia and methyl ethyl ketone (MEK) takes place is simulated. The simulation results are presented in two co-current and counter-current flow modes. Based on this new configuration, the released heat from the ammonia synthesis reaction as an extremely exothermic reaction in the inner tube is employed to supply the required heat for the endothermic 2-butanol dehydrogenation reaction in the outer tube. On the other hand, MEK and hydrogen are produced by the dehydrogenation reaction of 2-butanol in the endothermic side, and the produced hydrogen is used to supply a part of the ammonia synthesis feed in the exothermic side. Thus, 30.72% and 31.88% of the required hydrogen for the ammonia synthesis are provided by the dehydrogenation reaction in the co-current and counter-current configurations, respectively. Also, according to the thermal coupling, the required cooler and furnace for the ammonia synthesis and 2-butanol dehydrogenation conventional plants are eliminated, respectively. As a result, operational costs, energy consumption and furnace emissions are considerably decreased. Finally, a sensitivity analysis and optimization are applied to study the effect of the main process parameters variation on the system performance and obtain the minimum hydrogen make-up flow rate, respectively.  相似文献   
2.
Journal of Mechanical Science and Technology - In order to reveal the high-velocity deformation mechanisms of Ti-6Al-4V titanium alloy sheets, the dynamic deformation behavior and the...  相似文献   
3.
Exploring earth-abundant electrocatalyst with active and stable hydrogen evolution reaction (HER) properties is desirable but still challengeable. Herein, WP2 nanosheets are seamlessly grown on W foil (WP2 NSs/W) through phosphorization of WO3/W. This seamless WP2/W structure is beneficial to reducing the resistance between WP2 and W. Along with the exposed large density of active sites, WP2 NSs/W displays outstanding HER activity with a lower onset potential of about 0 V, a smaller overpotential of 90 mV for the current density of 10 mA/cm2 in basic media. Notably, WP2 NSs/W electrode also catalyzes HER efficiently in acid. The synthesis of WP2 NSs/W provides us a straightforward strategy to gain more cost-effective cathode for HER.  相似文献   
4.
The fatigue crack growth behaviour in as-cast and hot isostatically pressed (HIP) model cast aluminium piston alloys with hypoeutectic Si compositions of 6.9 wt% and 0.67 wt% has been investigated. The HIP alloys showed slightly improved fatigue crack growth resistance. Analysis of the crack path profiles and fracture surfaces showed that the crack tends to avoid Si and intermetallic particles at low ΔK levels up to a mid-ΔK of ∼7 MPa√m. However, some particles do fail ahead of the crack tip to facilitate crack advance due to the interconnected microstructure of these alloys. At higher levels of ΔK, the crack increasingly seeks out Si and intermetallic particles up to a ΔK of ∼9 MPa√m after which the crack preferentially propagates through intermetallic particles in the 0.67 wt%Si alloy or Si and intermetallics in the 6.9 wt%Si alloys. It was also observed that crack interaction with intermetallics caused crack deflections that led to roughness-induced crack closure and possibly oxide-induced crack closure at low to mid-ΔK. However, crack closure appears unimportant at high ΔK due to the large crack openings and evidenced by the fast crack growth rates observed.  相似文献   
5.
《Journal of power sources》2006,155(2):456-460
La1.3  xSmxCaMg0.7Ni9 (x = 0–0.3) hydrogen storage alloys were prepared by inductive melting and the effect of the Sm content on the structure and electrochemical properties was investigated in the paper. The Sm substitution for La in La1.3  xSmxCaMg0.7Ni9 (x = 0–0.3) alloys does not change the main phase structure (the rhombohedral PuNi3-type structure), but leads to a shrinkage of unit cell and a decrease of hydrogen storage capacity. With the increase of the Sm content in the alloys, the maximum discharge capacity of electrode decreases from 400.2 (x = 0) to 346.6 mAh g−1 (x = 0.3), but the high-rate dischargeability and cycling stability is improved. After 100 cycles, the capacity retention rate increases from 75 (x = 0) to 85% (x = 0.3).  相似文献   
6.
Lithium manganate spinel is extensively studied as a positive electrode in lithium ion rechargeable batteries. Growth of nano-size cathode particles is proposed to improve the rate capabilities of these cathode materials. It remains controversial if the particle size in the nano-range (as compared to the conventional micrometer size particles of these materials) has any appreciable influence on the discharge capacity, rate capabilities, and cycleability of these materials. In the 4 V range, especially at slightly elevated temperature, lithium manganate exhibits capacity fading though the underlying mechanism for such fading is not yet clear. In the present work, we have successfully prepared nano-crystalline lithium manganate spinel powder by an acetate base solution route. Though the discharge capacity of these nano-crystalline cathodes was equivalent to their microcrystalline counterpart, these exhibited capacity fading in the 4 V range. Through a combined X-ray diffraction, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses, we correlated the observed capacity fading with the onset of Jahn–Teller (J–T) distortion toward the end of the discharge in the cut-off limit between 4.2 and 3.4 V. It was postulated that if J–T distortion is the dominant fading mechanism of these nano-crystalline cathodes then by increasing the average oxidation state of the Mn ions in a virgin lithium manganate cathode, the onset of such distortion towards the end of the discharge could be delayed, and therefore, the cycleability of these cathodes could be improved. By synthesizing lithium and aluminum ion co-doped lithium manganate particles, we could increase the average oxidation state of the Mn ions in the virgin electrodes. Indeed, the cycleability of these co-doped cathodes was dramatically improved which supports our postulation. The doping contents of lithium and aluminum, however, should be further optimized to further increase the discharge capacity of these modified cathodes.  相似文献   
7.
Nanosizing is efficient as the dual-tuning of thermodynamics and kinetics for Mg-based hydrogen storage materials. The in-situ synthesis of nanocomposites through hydrogen-induced decomposition from long-period stacking ordered phase is proved effective to achieve active nano-sized catalysts with uniform dispersion. In this study, the Mg93Cu7-xYx (x = 0.67, 1.33, and 2) alloys with equalized Mg–Mg2Cu eutectic and 14H long-period stacking ordered phase of Mg92Cu3.5Y4.5 are prepared. Its solidification path is determined as α-Mg, 14H–Mg2Cu pair and Mg–Mg2Cu eutectic. The increased Y/Cu atomic ratio lowers the first-cycle hydrogenation rate of the alloys due to the increased 14H–Mg2Cu structure and reduced Mg–Mg2Cu eutectic interfaces. After the hydrogen-induced decomposition of the long-period stacking ordered phase, MgCu2 and YH3 nanoparticles are in-situ formed, and the following activation process significantly accelerates. The YH3 nanoparticles partly decompose to YH2 at 300 °C in vacuum and Mg–Mg2Cu-YHx nanocomposites are in-situ formed. The nano-sized YH2 helps catalyze H2 dissociation and the YHx/Mg interfaces stimulate H diffusion and the nucleation of MgH2. Therefore, the Mg93Cu5Y2 composite shows the fastest absorption rates. However, due to the positive effect of YHx/Mg interfaces on H diffusion and the negative effect of YH3 nanophases on the hydride decomposition, the minimum activation energy of 115.43 kJ mol−1 is obtained for the desorption of the Mg93Cu5.67Y1.33 hydride.  相似文献   
8.
Design of inexpensive and highly efficient bifunctional electrocatalyst is paramount for overall water splitting. In this study, amorphous Ni–Fe–P alloy was successfully synthesized by one-step direct-current electrodeposition method. The performance of Ni–Fe–P alloy as a bifunctional electrocatalyst toward both hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) was evaluated in 30 wt% KOH solution. It was found that Ni–Fe–P alloy exhibits excellent HER and OER performances, which delivers a current density of 10 mA cm?2 at overpotential of ~335 mV for HER and ~309 mV for OER with Tafel slopes of 63.7 and 79.4 mV dec?1, respectively. Moreover, the electrolyzer only needs a cell voltage of ~1.62 V to achieve 10 mA cm?2 for overall water splitting. The excellent electrocatalytic performance of Ni–Fe–P alloy is attributed to its electrochemically active constituents, amorphous structure, and the conductive Cu Foil.  相似文献   
9.
Different nanocrystalline magnesium with carbon layers were successfully synthesized via a facile wet-chemical ball milling method for 20, 30 and 40 h, respectively. Based on Scherrer formula and X-ray diffraction results, the average crystallite size of all the three samples was below 30 nm. TEM observations showed that the hydrogenated Mg particles were covered with carbon layers. Moreover, the 40 h ball milled Mg sample showed outstanding hydrogen storage performance especially in the aspect of hydrogen absorption. The as-prepared sample started to take up hydrogen at nearly room temperature and eventually absorbed 6.8 wt% hydrogen at 200 °C. The apparent activation energy (Ea) of hydrogen absorption for the sample was decreased to 26.7 kJ/mol, much lower than that of other reported systems. For the dehydrogenation experiments, the hydrogenated sample could start to release hydrogen at about 275 °C and 6.5 wt% hydrogen was desorbed in 20 min at 325 °C. Interestingly, the prepared samples showed noteworthy air stability. Been placed in the air for 60 min, the dehydrogenation kinetics and hydrogen capacity of the three samples were basically unchanged, making it possible to be used in future commercial applications.  相似文献   
10.
The hydrogen sorption performance of Mg is constrained by the difficulties of hydrogen dissociation on particle surface and mass transfer in particle bulk. This work focuses on oxygen vacancy and its effect on the performance of Mg-xCeO2 (x = 0.7, 1.5, 3, and 6 mol.%) from ball milling for hydrogen storage. The HRTEM observation shows that the crystal domains of Mg from ball milling are reduced to nanoscale by the addition of hard CeO2 nanoparticles. The XRD and XPS characterization shows that during heating for hydrogenation, some O atoms in CeO2 transfer to Mg and form MgO, and CeO2 converts to Ce6O11 with oxygen vacancies. The isothermal absorption (p-c-T) analysis shows that the hydrogen capacity of the materials increases with the increase of CeO2 additive, and the optimum addition is 3.0 mol.%. The DSC analysis shows that with the addition of 3.0 mol.% of CeO2, the hydrogen desorption peak temperature is 35 °C lower than that of pure MgH2, and the calculated activation energy deceases by 31.3 kJ/mol. The improvement of hydrogen sorption performance is mainly attributed to the formation of oxygen vacancies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号