首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8202篇
  免费   878篇
  国内免费   322篇
电工技术   160篇
综合类   321篇
化学工业   1700篇
金属工艺   467篇
机械仪表   341篇
建筑科学   490篇
矿业工程   189篇
能源动力   1040篇
轻工业   376篇
水利工程   117篇
石油天然气   931篇
武器工业   6篇
无线电   570篇
一般工业技术   1586篇
冶金工业   163篇
原子能技术   83篇
自动化技术   862篇
  2024年   17篇
  2023年   364篇
  2022年   299篇
  2021年   380篇
  2020年   436篇
  2019年   382篇
  2018年   368篇
  2017年   426篇
  2016年   407篇
  2015年   499篇
  2014年   601篇
  2013年   710篇
  2012年   770篇
  2011年   806篇
  2010年   604篇
  2009年   523篇
  2008年   267篇
  2007年   311篇
  2006年   227篇
  2005年   126篇
  2004年   75篇
  2003年   83篇
  2002年   103篇
  2001年   92篇
  2000年   35篇
  1999年   42篇
  1998年   25篇
  1997年   21篇
  1996年   25篇
  1995年   22篇
  1994年   26篇
  1993年   17篇
  1992年   17篇
  1991年   20篇
  1990年   24篇
  1989年   28篇
  1988年   43篇
  1987年   80篇
  1986年   76篇
  1985年   14篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1951年   4篇
排序方式: 共有9402条查询结果,搜索用时 437 毫秒
1.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
2.
Energy bands, effective mass of carriers, absolute band edge positions and optical properties of tetragonal AgInS2 were calculated using a first-principles approach with the exchange correlation described by B3LYP hybrid functional. The results indicate that tetragonal AgInS2 has a direct band gap of 1.93 eV, which reproduce well experimental value. Calculated effective masses of electrons and holes are both small which are beneficial to separation and migration of electron and hole pairs. This implies that AgInS2 has good photocatalytic performance. The calculated optical characteristics indicate that AgInS2 has a slight anisotropy for both the real and imaginary parts of the dielectric function and exhibits large optical absorption in the visible light region. Furthermore, the calculated band edge positions in (100), (010) and (001) surfaces indicate that tetragonal AgInS2 is beneficial to the reduction and oxidation of water to hydrogen and oxygen under visible light irradiation.  相似文献   
3.
Fiber orientations play the decisive role in grinding process of woven ceramic matrix composites, but the influence of woven fibers in grinding process is not clear. This paper studies the surface quality and grinding force by comparing different woven surfaces. Through a series of experiments in optimized sampling conditions, we analyze characteristics of the material surface topography height, wave distribution and surface support properties in details. And we find some outstanding characteristics of the surface microstructure. We also study the influence of grinding processing parameters on surface microstructure. The results show that machining surface which contains more parallel fibers is rougher and more keenness than gauss surface. Grinding wheel speed and depth of cut have great influence on surface topography and surface support properties. And it is discovered that grinding forces are also highly dependent on fiber orientations. The mechanism of the grinding phenomena is also analyzed in this paper according to knowledge of fracture mechanics and mechanical damage phenomenology. The research obtained will be an important technical support on improving the processing quality of woven ceramic matrix composites.  相似文献   
4.
郭建  丁继政  朱晓冉 《软件学报》2020,31(5):1353-1373
"如何构造高可信的软件系统"已成为学术界和工业界的研究热点.操作系统内核作为软件系统的基础组件,它的安全可靠是构造高可信软件系统的重要环节.为了确保操作系统内核的安全可靠,将形式化方法引入到操作系统内核验证中,提出了一个自动化验证操作系统内核的框架.该验证框架包括:(1)分别对C语言程序和混合语言程序(C语言和汇编语言)进行验证;(2)在混合语言程序验证中,为汇编程序建立抽象模型,并将C语言程序和抽象模型粘合形成基于C语言验证工具可接收的验证模型;(3)从规范中提取性质,基于该自动验证工具,对性质完成自动验证;(4)该框架不限于特定的硬件架构.成功地运用该验证框架对两种不同硬件平台的嵌入式实时操作系统内核μC/OS-II进行了验证.结果显示:利用该框架在对两个不同的硬件平台上内核验证时,框架的可重复利用率很高,高达到88%,虽然其抽象模型需要根据不同的硬件平台进行重构.在对基于这两种平台的操作系统内核验证中,分别发现了10~12处缺陷.其中,在ARM平台上两处与硬件相关的问题被发现.实验表明,该方法对不同硬件平台的同一个操作系统分析验证具有一定的通用性.  相似文献   
5.
We perform classical molecular dynamics simulations to investigate the mechanical compression effect on the thermal conductivity of the single-walled carbon nanotube (SWCNT) forest, in which SWCNTs are closely aligned and parallel with each other. We find that the thermal conductivity can be linearly enhanced by increasing compression before the buckling of SWCNT forests, but the thermal conductivity decreases quickly with further increasing compression after the forest is buckled. Our phonon mode analysis reveals that, before buckling, the smoothness of the inter-tube interface is maintained during compression, and the inter-tube van der Waals interaction is strengthened by the compression. Consequently, the twisting-like mode (good heat carrier) is well preserved and its group velocity is increased by increasing compression, resulting in the enhancement of the thermal conductivity. The buckling phenomenon changes the circular cross section of the SWCNT into ellipse, which causes effective roughness at the inter-tube interface for the twisting motion. As a result, in ellipse SWCNTs, the radial breathing mode (poor heat carrier) becomes the most favorable motion instead of the twisting-like mode and the group velocity of the twisting-like mode drops considerably, both of which lead to the quick decrease of the thermal conductivity with further increasing compression after buckling.  相似文献   
6.
Self-assembled peptide hydrogels represent the realization of peptide nanotechnology into biomedical products. There is a continuous quest to identify the simplest building blocks and optimize their critical gelation concentration (CGC). Herein, a minimalistic, de novo dipeptide, Fmoc-Lys(Fmoc)-Asp, as an hydrogelator with the lowest CGC ever reported, almost fourfold lower as compared to that of a large hexadecapeptide previously described, is reported. The dipeptide self-assembles through an unusual and unprecedented two-step process as elucidated by solid-state NMR and molecular dynamics simulation. The hydrogel is cytocompatible and supports 2D/3D cell growth. Conductive composite gels composed of Fmoc-Lys(Fmoc)-Asp and a conductive polymer exhibit excellent DNA binding. Fmoc-Lys(Fmoc)-Asp exhibits the lowest CGC and highest mechanical properties when compared to a library of dipeptide analogues, thus validating the uniqueness of the molecular design which confers useful properties for various potential applications.  相似文献   
7.
Three-dimensional (3D) highly interconnected graphitized macroporous carbon foam with uniform mesopore walls has been successfully fabricated by a simple and efficient hydrothermal approach using resorcinol and formaldehyde as carbon precursors. The commercially available cheap polyurethane (PU) foam and Pluronic F127 were used as a sacrificial polymer and mesoporous structure-directing templates, respectively. The graphitic structure of carbon foam was obtained by catalytic graphitization method using iron as catalyst. Three different carbon foams such as graphitized macro-mesoporous carbon (GMMC) foam, amorphous macro-mesoporous carbon (AMMC) foam and graphitized macroporous carbon (GMC) foam were fabricated and their physicochemical and mechanical properties were systematically measured and compared. It was found that GMMC possess well interconnected macroporous structure with uniform mesopores located in the macroporous skeletal walls of continuous framework. Besides, GMMC foam possesses a well-defined graphitic framework with high surface area (445 m2/g), high pore volume (0.35 cm3/g), uniform mesopores (3.87 nm), high open porosity (90%), low density (0.30 g/cm3) with good mechanical strength (1.25 MPa) and high electrical conductivity (11 S/cm) which makes it a promising material for many potential applications.  相似文献   
8.
9.
TiO2 is an ideal substitute to ZrSiO4 ceramic opacifier, yet it is limited to application because of the undesirable yellowing resulting from rutile formation. Herein, the SiO2-CaCO3-TiO2 composite opacifier (Si-Ca-Ti) was constructed. The glaze used Si-Ca-Ti presents a superior opacification performance than ZrSiO4 opacified glaze without causing yellowing, showing L*, a*, b* values of 94.81, -0.67 and 3.23. By comparison, the glaze using SiO2, CaCO3, and TiO2 mixture shows lower opacification and yellowish surface with L* and b* values of 92.99 and 5.36. It is revealed that there is a close interface bonding among SiO2, CaCO3 and TiO2 in Si-Ca-Ti, which promotes their combination reaction to generate opacification phase titanite and inhibit rutile formation when sintering, resulting in the white surface and opacification improvement of the glaze. This study proposes a green and efficient strategy to achieve white and highly opacified glaze for sanitary ceramics, exhibiting good application prospect.  相似文献   
10.
《材料科学技术学报》2019,35(7):1309-1314
Degenerate pattern is a seemingly disordered morphology but it exhibits the inherently ordered crystal connected with tip-splitting and limited stability which makes it difficult to observe in the metallic system. Here we employ (100)[011] orientated planar-front seeds using directional solidification and reveal the fundamental origins of the degenerate pattern growth in an Al-4.5 wt% Cu alloy. We find that the spacing of the tip-splitting (λ) in the degenerate of the alloys followed a power law, λV−0.5, and the frequency (f) of the splitting was related to the growth velocity (V) by ƒ∝V1.5. The dimensionless growth direction (θ/θ0) increased monotonously and approached 0.6 with faster velocity, attributed to its anisotropy in the interface kinetics. Once growth velocity exceeded a threshold, two types of pattern transitions from degenerate to regular dendrites were proposed. One of them exhibited a random and chaotic mode and the other underwent a rotation in growth direction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号