首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10206篇
  免费   818篇
  国内免费   202篇
电工技术   686篇
综合类   586篇
化学工业   1427篇
金属工艺   737篇
机械仪表   1123篇
建筑科学   159篇
矿业工程   98篇
能源动力   3296篇
轻工业   73篇
水利工程   61篇
石油天然气   62篇
武器工业   50篇
无线电   287篇
一般工业技术   1439篇
冶金工业   165篇
原子能技术   162篇
自动化技术   815篇
  2024年   28篇
  2023年   686篇
  2022年   512篇
  2021年   483篇
  2020年   766篇
  2019年   619篇
  2018年   304篇
  2017年   420篇
  2016年   554篇
  2015年   625篇
  2014年   628篇
  2013年   650篇
  2012年   697篇
  2011年   578篇
  2010年   430篇
  2009年   527篇
  2008年   188篇
  2007年   398篇
  2006年   443篇
  2005年   267篇
  2004年   105篇
  2003年   118篇
  2002年   164篇
  2001年   157篇
  2000年   91篇
  1999年   108篇
  1998年   55篇
  1997年   21篇
  1996年   46篇
  1995年   35篇
  1994年   25篇
  1993年   27篇
  1992年   31篇
  1991年   24篇
  1990年   24篇
  1989年   33篇
  1988年   66篇
  1987年   137篇
  1986年   126篇
  1985年   21篇
  1984年   1篇
  1959年   3篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Machine learning algorithms have been widely used in mine fault diagnosis. The correct selection of the suitable algorithms is the key factor that affects the fault diagnosis. However, the impact of machine learning algorithms on the prediction performance of mine fault diagnosis models has not been fully evaluated. In this study, the windage alteration faults (WAFs) diagnosis models, which are based on K-nearest neighbor algorithm (KNN), multi-layer perceptron (MLP), support vector machine (SVM), and decision tree (DT), are constructed. Furthermore, the applicability of these four algorithms in the WAFs diagnosis is explored by a T-type ventilation network simulation experiment and the field empirical application research of Jinchuan No. 2 mine. The accuracy of the fault location diagnosis for the four models in both networks was 100%. In the simulation experiment, the mean absolute percentage error (MAPE) between the predicted values and the real values of the fault volume of the four models was 0.59%, 97.26%, 123.61%, and 8.78%, respectively. The MAPE for the field empirical application was 3.94%, 52.40%, 25.25%, and 7.15%, respectively. The results of the comprehensive evaluation of the fault location and fault volume diagnosis tests showed that the KNN model is the most suitable algorithm for the WAFs diagnosis, whereas the prediction performance of the DT model was the second-best. This study realizes the intelligent diagnosis of WAFs, and provides technical support for the realization of intelligent ventilation.  相似文献   
2.
Compared to liquid/gas hydrogen tank, the pipeline is an economical way for hydrogen transportation. With the quick development of utility tunnel in China, hydrogen pipeline enters the gas compartment can be expected soon. However, all the safety requirements of the gas compartment in the current standards are designed for natural gas, and the applicability for hydrogen is unknown. Therefore, a series of studies were started to investigate the safety of hydrogen in utility tunnel. In this work, a real utility tunnel locates at Shanghai was selected as the physical object. A 3D numerical model was built and successfully validated by a scaled tunnel test. The model has the maximum deviation of +9.5%. After that, a comparatively study of the dispersion behavior of CH4 and H2 was conducted. The assumed scenario was a 20 mm small-hole leaks with gauge pressure of 1.0 MPa in the middle of the tunnel. Numerical results shown that, H2 has a larger dispersion velocity and higher concentration, and is more dangerous compared to CH4. The current emergency ventilation strategy of air change rate of 12 times/h is not effective enough to dilute the H2 flammable cloud. The alarm time of the testing points shown strong linear law. There was a sharp variation in the range of 20%–100% LFL (Lower Flammable Limit), so the alarm strategy in the tunnel standards is too ideal for both CH4 and H2. The numerical results in the present study could provide a guidance for the design and safety management of the hydrogen tunnel.  相似文献   
3.
The evaluation of the volumetric accuracy of a machine tool is an open challenge in the industry, and a wide variety of technical solutions are available in the market and at research level. All solutions have advantages and disadvantages concerning which errors can be measured, the achievable uncertainty, the ease of implementation, possibility of machine integration and automation, the equipment cost and the machine occupation time, and it is not always straightforward which option to choose for each application. The need to ensure accuracy during the whole lifetime of the machine and the availability of monitoring systems developed following the Industry 4.0 trend are pushing the development of measurement systems that can be integrated in the machine to perform semi-automatic verification procedures that can be performed frequently by the machine user to monitor the condition of the machine. Calibrated artefact based calibration and verification solutions have an advantage in this field over laser based solutions in terms of cost and feasibility of machine integration, but they need to be optimized for each machine and customer requirements to achieve the required calibration uncertainty and minimize machine occupation time.This paper introduces a digital twin-based methodology to simulate all relevant effects in an artefact-based machine tool calibration procedure, from the machine itself with its expected error ranges, to the artefact geometry and uncertainty, artefact positions in the workspace, probe uncertainty, compensation model, etc. By parameterizing all relevant variables in the design of the calibration procedure, this simulation methodology can be used to analyse the effect of each design variable on the error mapping uncertainty, which is of great help in adapting the procedure to each specific machine and user requirements. The simulation methodology and the analysis possibilities are illustrated by applying it on a 3-axis milling machine tool.  相似文献   
4.
This work is focused on the explosion characteristics of premixed gas containing different volume fractions of hydrogen in a narrow channel (1000 mm × 50 mm × 10 mm) under the circumstance of stoichiometric ratio. The ignition positions were set in the closed end and the middle of the pipeline respectively. The results showed that when the gas was ignited at the pipeline closed end, the propagating flame was tulip structure for different premixed gas. When the hydrogen volume fraction was less than 40%, the flame propagation speed increased significantly with the rise of hydrogen volume fraction, and the overpressure peak also appeared obviously in advance. However, when the volume fraction of hydrogen was more than 40%, the increase of flame propagation speed and the overpressure peak occurrence time varied slightly. Furthermore, when the ignition position was placed in the middle of the pipeline, the flame propagation speed propagating to the opening end was much faster than that propagating to the closing end, and there was no tulip shape when the flame propagates to the opening end. The flame propagating to the closed end appeared tulip shape under the influence of airflow, and high-frequency flame oscillation occurred during the propagation. This work shows that the hydrogen volume fraction and ignition position significantly affected the flame structure, flame front speed, and explosion overpressure.  相似文献   
5.
Cell temperature and water content of the membrane have a significant effect on the performance of fuel cells. The current-power curve of the fuel cell has a maximum power point (MPP) that is needed to be tracked. This study presents a novel strategy based on a salp swarm algorithm (SSA) for extracting the maximum power of proton-exchange membrane fuel cell (PEMFC). At first, a new formula is derived to estimate the optimal voltage of PEMFC corresponding to MPP. Then the error between the estimated voltage at MPP and the actual terminal voltage of the fuel cell is fed to a proportional-integral-derivative controller (PID). The output of the PID controller tunes the duty cycle of a boost converter to maximize the harvested power from the PEMFC. SSA determines the optimal gains of PID. Sensitivity analysis is performed with the operating fuel cell at different cell temperature and water content of the membrane. The obtained results through the proposed strategy are compared with other programmed approaches of incremental resistance method, Fuzzy-Logic, grey antlion optimizer, wolf optimizer, and mine-blast algorithm. The obtained results demonstrated high reliability and efficiency of the proposed strategy in extracting the maximum power of the PEMFC.  相似文献   
6.
7.
The slight-alkalization of generator internal cooling water (GICW) is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator. CO2 inleakage is increasingly identified as a potential security risk for GICW system. In this paper, the influence of CO2 inleakage on the slight-alkalization of GICW was theoretically discussed. Based on the equilibriums of the CO2-NaOH-H2O system, CO2 inleakage saturation was derived to quantify the amount of the dissolved CO2 in GICW. This parameter can be directly calculated with the measured conductivity and the [Na+] of GICW. The influence of CO2 inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed. The more severe the inleakage, the narrower the water quality operation ranges of GICW, resulting in the more difficult the slight-alkalization conditioning of GICW. The temperature calibrations of the conductivity and the pH value of GICW show non-linear correlations with the amount of CO2 inleakage and the NaOH dosage. This study provides insights into the influence of CO2 inleakage on the slight-alkalization of GICW, which can serve as the theoretical basis for the actual slight-alkalization when CO2 inleakage occurs.  相似文献   
8.
As a solid state joining process, ultrasonic spot welding has been proven to be a promising technique for joining copper alloys. However, challenges still remain in employing ultrasonic spot welding to join copper alloys. This article comprehensively reviews the current state of ultrasonic spot welding of copper alloys with a number of critical issues including materials flow, plastic deformation, temperature distribution, vibration, relative motion, vertical displacement, interface friction coefficient, online monitoring technique, coupled with the macrostructure and microstructure, the mechanical properties and electrical conductivity. In addition, the future trends in this field are provided.  相似文献   
9.
10.
Waveguide configurations of hierarchical system are proposed as new microstructures for composites in absorbing enhancement. Supercritical fluid (SCF) one-pot exfoliation of layered graphite and manganese oxide mixing materials is developed to obtain a hierarchical system, containing graphene nanosheets (GNS) and exfoliated manganese oxides (EMO) in different sizes. Composites with GNS–EMO embedded in epoxy resin matrix are produced for a design of dielectric and magnetic loss integrated absorber. Volume fraction of GNS–EMO in composites is given for an optimal quantity of resin epoxy in fixation and formation. The effect of mixing ratios between electric and magnetic components is provided for the design of dielectric and magnetic loss integrated absorbers. Frequency shifting phenomena are revealed in the component adjusting course. Excluding the offsetting sizes, reflection loss of composites is enhanced as thickness increases. Synergistic effect of electric and magnetic coordinated materials demonstrates the superiority of micro-waveguide structures in GNS–EMO composite absorber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号