首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3281篇
  免费   90篇
  国内免费   79篇
电工技术   15篇
综合类   93篇
化学工业   629篇
金属工艺   1046篇
机械仪表   37篇
建筑科学   7篇
矿业工程   32篇
能源动力   150篇
轻工业   3篇
水利工程   2篇
石油天然气   1篇
武器工业   3篇
无线电   71篇
一般工业技术   552篇
冶金工业   509篇
原子能技术   8篇
自动化技术   292篇
  2024年   8篇
  2023年   124篇
  2022年   145篇
  2021年   108篇
  2020年   198篇
  2019年   178篇
  2018年   124篇
  2017年   187篇
  2016年   104篇
  2015年   137篇
  2014年   163篇
  2013年   197篇
  2012年   256篇
  2011年   265篇
  2010年   184篇
  2009年   218篇
  2008年   68篇
  2007年   172篇
  2006年   147篇
  2005年   63篇
  2004年   34篇
  2003年   30篇
  2002年   37篇
  2001年   43篇
  2000年   37篇
  1999年   45篇
  1998年   26篇
  1997年   7篇
  1996年   3篇
  1995年   10篇
  1994年   18篇
  1993年   8篇
  1992年   14篇
  1991年   7篇
  1990年   12篇
  1989年   10篇
  1988年   11篇
  1987年   23篇
  1986年   19篇
  1985年   10篇
排序方式: 共有3450条查询结果,搜索用时 15 毫秒
1.
Hydrogen technology is widely considered a novel clean energy source, and electrolysis is an effective method for hydrogen evolution. Therefore, efficient hydrogen evolution reaction (HER) catalysts are urgently needed to replace precious metal catalysts and meet ecological and environmental protection standards. Herein, Ni–Mn–P electrocatalysts are synthesized using facile electrodeposition technology. The influence of the Mn addition on the catalytic behavior is studied by the comprehensive analysis of catalytic performance and morphology of the catalysts. Among them, the Ni–Mn–P0.01 catalyst exhibits small coral-like structures, greatly improving the adsorption and desorption of hydrogen ions and reducing the overpotential hydrogen evolution. Consequently, overpotential at 10 mA cm?2 electric current density is 113 mV, and the value of the Tafel slope achieves 74 mV/dec. Furthermore, the Ni–Mn–P catalyst shows long-time (20 h) stability at current densities of 10 and 60 mA/cm2. The results confirm that the synergistic effect of Ni, Mn, and P accelerates the electrochemical reaction. Meanwhile, the addition of manganese element can change the micromorphology of the catalyst, thereby exposing more active sites to participate in the reaction, enhancing water ionization, improving the catalytic performance. This study opens a new way toward improving the activity of the catalyst by adjusting Mn concentration during the electrodeposition process.  相似文献   
2.
The total energies of Laves phases in the Cr–Nb and Zr–Cr systems have been calculated by the pseudo-potential VASP code with a full relaxation of all structural parameters. The special quasirandom structures (SQSs) have been constructed and their total energies have been calculated by the VASP code to predict the enthalpies of mixing for bcc and hcp solid solution phases. The phonon calculations for the C14 and C15 Laves phases have been performed to analyze the phase stability at elevated temperatures. The experimental study on the Zr–Cr system has been carried out at different temperatures to determine the phase boundaries. Based on these results, thermodynamic models of Cr–Nb and Zr–Cr with extension to the ternary Zr–Nb–Cr systems have been developed in this work by using the CALPHAD approach.  相似文献   
3.
In this work, three dimensional (3D) NixCo1−xS2/graphene composite hydrogels with different Ni contents (denoted as NixCo1−xS2/GH (x = 0, 0.31, 0.56, 0.66, 1)) have been synthesized by a simple one-step hydrothermal method and utilized as the active materials of supercapacitors. The as-prepared samples present a 3D interconnected porous network with the pore sizes in the range of several to tens micrometers. Interestingly, the NixCo1−xS2 particles are uniformly located on the graphene network and the particle size is evolved from ∼50 nm to ∼1.5 μm with the increase of Ni content. The electrochemical measurements revealed that the specific capacitance, rate capability and cyclability of different NixCo1−xS2/GH electrodes are strongly affected by their different Ni content. Among these, the 3D Ni0.31Co0.69S2/GH composite has the highest specific capacitance of 1166 F/g at a current density of 1 A/g. Furthermore, a specific capacitance of 559 F/g can be still maintained at high current density of 20 A/g. After 1000 charge–discharge cycles at 5 A/g, the specific capacitance remains a high value of 755 F/g.  相似文献   
4.
This publication contains the thermodynamic results received by the drop calorimetry method. The experiments were conducted for four different cross sections, at the temperature of 1080 K. The investigated alloys were as follows: (Ga0.75Li0.25)1-xGex, (Ge0.50Li0.50)1-xGax, (Ga0.50Li0.50)1-xGex, (Ga0.25Li0.75)1-xGex. The mixing enthalpy changes measured for all four cross sections of the Ga-Ge-Li system are characterized by negative deviations from the ideal solutions. The Muggianu model with the ternary interaction parameters was applied to elaborate the experimental data of the mixing enthalpy change with the use of the optimized thermodynamic parameters of the binary systems available in the literature.  相似文献   
5.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   
6.
《Ceramics International》2020,46(7):8675-8681
The dielectric properties and bipolar polarization-electric field (P-E) and strain-electric field (S-E) dynamic hysteresis of a relaxor [001]c 0.73Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 (PMN-0.27PT) single crystal were investigated to reveal more details of the temperature-induced phase transitions. Different linear scaling relations for ferroelectric hysteresis area <A>, coercive field Ec, saturation polarization Ps and remnant polarization Pr versus temperature τ were measured in different temperature regions. For each measurement frequency f, all hysteresis parameters were found to decrease linearly with temperature in the temperature range of the single rhombohedral (R) phase or tetragonal (T) phase, and the rate of decrease in the T phase was observed to be much larger than the corresponding rate in the R phase. In the temperature range near the R-T phase transition, the exponent α in the power law <A>∝f α for the R phase was found to be smaller than that for the T phase, and the magnitude of α depended strongly on temperature when the crystal was in the R-T coexisting phase state. Our experimental and theoretical results indicate that the difference in the activation energy and dipole moment in the R and T phases may lead to the observed discrepancy for the P-E and S-E hysteresis behaviour in different temperature regions.  相似文献   
7.
This paper presents an overview and examples of material design and development using (1) classical thermodynamics; (2) CALPHAD (calculation of phase diagrams) modeling; and (3) Integrated Computational Materials Engineering (ICME) approaches. Although the examples are given in lightweight aluminum and magnesium alloys for structural applications, the fundamental methodology and modeling principles are applicable to all materials and engineering applications. The examples in this paper have demonstrated the effectiveness and limitations of classical thermodynamics in solving specific problems (such as nucleation during solidification and solid-state precipitation in aluminum alloys). Computational thermodynamics and CALPHAD modeling, when combined with critical experimental validation, have been used to guide the selection and design of new magnesium alloys for elevated-temperature applications. The future of material design and development will be based on a holistic ICME approach. However, key challenges exist in many aspects of ICME framework, such as the lack of diffusion/mobility databases for many materials systems, limitation of current microstructural modeling capability and integration tools for simulation codes of different length scales.  相似文献   
8.
9.
《Ceramics International》2020,46(4):4235-4239
In the work, we focused on the intrinsic dielectric behavior of Mg2TiO4 spinel ceramic by P–V–L theory and infrared spectra analysis. Ti–O bonds have larger bond ionicity values, thus playing an important role in dielectric polarization. The theoretical dielectric constant was predicted by calculating the bond susceptibility of each chemical bond. Furthermore, Ti(1)–O bonds are responsible for the structural stability of Mg2TiO4 ceramic. Based on classical dispersion theory, permittivity and loss corresponding to each infrared active mode were quantified, and then the crucial contribution of low-frequency modes to intrinsic dielectric properties were determined.  相似文献   
10.
A low-viscosity, fast crosslinking preceramic polymer system was developed as a base for liquid state processing. The system consists of a water-crosslinkable silicone polymer, a latent water source for in situ water generation, and a tin catalyst. While the silicone polymer and the water source can be mixed in any proportion, the catalyst must be added separately to achieve crosslinking at room temperature within a short time. By pyrolysis in inert atmosphere at 1000 °C the system was shown to have a high ceramic yield of ∼54 wt.%. The base system is compatible with alkanes, which makes it suitable for viscosity control when the system is filler-loaded for tailoring of properties. Due to its low viscosity one possible use of the system is in inkjet printing. Further since the crosslinking is rapid it can also be used in the layer by layer manufacturing of ceramic parts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号