首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   1篇
建筑科学   1篇
  2016年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Computational fluid dynamics( CFD) is used to investigate a new type of two-chamber natural gas distributor,which has a natural gas inlet and nine nozzle outlets. The uniformity at the outlet of distributor is practice proven to have significant degree influence on its comprehensive performance. To improve the uniformity at the nozzles of the gas distributor,CFD modeling with the RNG k-ε turbulence model is undertaken to understand the mass flow rate of nozzles with reference to different length of chambers and the most optimal length is obtained. The internal flow pattern of the natural gas distributor is analyzed. It is found that the local maximum deviation of the nozzle outflow rate increases with the increase of chambers length when the length is more than 64 mm. The results provide useful suggestions for the optimal design of two-chamber natural gas distributor.  相似文献   
2.
The Pile-Beam-Arch (PBA) excavation method is widely used in subway station construction for it greatly reduces ground settlement caused by excavation. The stress state of side piles is extremely complex in the supporting system of the subway station excavated by PBA method. This paper deduces the internal force calculation formula for side piles under the most unfavorable loading state with the vertical force considered. Testing apparatus which can model the actual loading state of side piles are designed. Single-factor sensitivity analysis is conducted by means of the reduced-scale model test and numerical simulation to study the three supporting parameters (i.e. pile diameter, pile spacing and buried depth). Results indicate that: the additional bending moment induced by the vertical load at the pile top should be considered in internal force calculation of side piles; values from the deduced theoretical calculation formula agree with the test values; horizontal displacement of the pile body reduces significantly and the bending moment increases greatly with the increase of pile diameter or the decrease of pile spacing; the pile bottom basically meets the constraint condition of the fixed end when the buried depth is two times of the excavation depth. Under the test conditions of this paper, critical sensitivity values of three supporting parameters, i.e. pile diameter, pile spacing and buried depth, are respectively 32 mm, 2d (pile diameter) and 2h (excavation depth). It’s more economical and effective to adopt the scheme of increasing pile diameter than the scheme of narrowing pile spacing when there’s a high requirement for displacement control of side piles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号