首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6957篇
  免费   947篇
  国内免费   339篇
电工技术   267篇
综合类   473篇
化学工业   611篇
金属工艺   138篇
机械仪表   231篇
建筑科学   29篇
矿业工程   14篇
能源动力   204篇
轻工业   51篇
水利工程   1篇
石油天然气   12篇
武器工业   37篇
无线电   2746篇
一般工业技术   486篇
冶金工业   42篇
原子能技术   22篇
自动化技术   2879篇
  2024年   18篇
  2023年   330篇
  2022年   318篇
  2021年   418篇
  2020年   377篇
  2019年   312篇
  2018年   378篇
  2017年   823篇
  2016年   738篇
  2015年   590篇
  2014年   681篇
  2013年   458篇
  2012年   508篇
  2011年   389篇
  2010年   328篇
  2009年   318篇
  2008年   173篇
  2007年   270篇
  2006年   255篇
  2005年   112篇
  2004年   56篇
  2003年   58篇
  2002年   66篇
  2001年   70篇
  2000年   47篇
  1999年   37篇
  1998年   24篇
  1997年   11篇
  1996年   9篇
  1995年   15篇
  1994年   15篇
  1993年   16篇
  1992年   7篇
  1991年   8篇
  1990年   9篇
  1986年   1篇
排序方式: 共有8243条查询结果,搜索用时 15 毫秒
11.
The influence of the environment on the excited state transitions of meso-tetrakis(p-sulfonatophenyl) porphyrin (TPPS) is reported. TPPS was investigated in protonated and non-protonated forms, and in the presence of the cationic cetyltrimethylammonium bromide (CTAB) micelles. The singlet excited-state absorption spectra were measured by using the white-light continuum Z-scan technique and the triplet–triplet absorption spectra were acquired employing an association of laser flash photolysis and Z-scan techniques. Our results show that the perseveration of the molecular symmetry, upon excitation, depends on the state of multiplicity of the molecules, as well as on the environment and structural characteristics of the porphyrin. Additionally, it was observed that for excited molecules, the ring distortion caused by the protonation of porphyrin ring has great influence on the changes observed for the symmetry and vibronic structure. The results clearly show that the porphyrin investigated is a promising candidate for optical limiting applications for all investigated environments.  相似文献   
12.
A steelmaking-continuous casting (SCC) scheduling problem is an example of complex hybrid flow shop scheduling problem (HFSSP) with a strong industrial background. This paper investigates the SCC scheduling problem that involves controllable processing times (CPT) with multiple objectives concerning the total waiting time, earliness/tardiness and adjusting cost. The SCC scheduling problem with CPT is seldom discussed in the existing literature. This study is motivated by the practical situation of a large integrated steel company in which the just-in-time (JIT) and cost-cutting production strategy have become a significant concern. To address this complex HFSSP, the scheduling problem is decomposed into two subproblems: a parallel machine scheduling problem (PMSP) in the last stage and an HFSSP in the upstream stages. First, a hybrid differential evolution (HDE) algorithm combined with a variable neighborhood decomposition search (VNDS) is proposed for the former subproblem. Second, an iterative backward list scheduling (IBLS) algorithm is presented to solve the latter subproblem. The effectiveness of this bi-layer optimization approach is verified by computational experiments on well-designed and real-world scheduling instances. This study provides a new perspective on modeling and solving practical SCC scheduling problems.  相似文献   
13.
Smart grid has opened up a new role of “prosumer” in an energy value network, transforming many conventional energy consumers into prosumers, who not only generate green energy but also share the surplus with utilities and other consumers. The concept of a goal-oriented prosumer community group (PCG) has emerged recently as an effective way to fulfill sustainable energy exchange. Such community-based energy sharing networks comprise multiple irreconcilable objectives such as demand constraints, cost constraints, and income maximization. In many cases, one goal may be achievable only at the expense of other goals. This necessitates the development of an effective framework to manage the multiple goals and reduce the gap with their achievement levels. Therefore, in this research paper, an effective framework is developed to negotiate among the multiple goals and thus to define optimal mutual goals for each PCG in a more sustainable manner using multiple-criteria goal programming techniques. Simulation results are presented to illustrate how the methods work in practical situations, where each of the objective measure is given a target value and the unwanted deviations from this set are minimized in an achievement function.  相似文献   
14.
Numerical simulation, using SILVACO-TCAD, is carried out to explain experimentally observed effects of different types of deep levels on the capacitance–voltage characteristics of p-type Si-doped GaAs Schottky diodes grown on high index GaAs substrates. Two diodes were grown on (311)A and (211)A oriented GaAs substrates using Molecular Beam Epitaxy (MBE). Although, deep levels were observed in both structures, the measured capacitance–voltage characteristics show a negative differential capacitance (NDC) for the (311)A diodes, while the (211)A devices display a usual behaviour. The NDC is related to the nature and spatial distribution of the deep levels, which are characterized by the Deep Level Transient Spectroscopy (DLTS) technique. In the (311)A structure only majority deep levels (hole traps) were observed while both majority and minority deep levels were present in the (211)A diodes. The simulation, which calculates the capacitance–voltage characteristics in the absence and presence of different types of deep levels, agrees well with the experimentally observed behaviour.  相似文献   
15.
BaCu2-xCoxSi2O7 solid solutions with orthorhombic structure (Pnma) were prepared by solid-state reaction method. The phase synthesis process, structural evolution and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics were investigated. Single BaCu2Si2O7 phase was obtained when calcined at 950 °C for 3 h and was decomposed into BaCuSi2O6 phase when calcined at 1075 °C for 3 h. The sintering process was effectively promoted when Cu2+ was replaced by Co2+ and the maximum solubility of BaCu2-xCoxSi2O7 was located between 0.15 and 0.20. P-V-L complex chemical bond theory and Raman spectra were used to explain the structure-property correlations of BaCu2-xCoxSi2O7 ceramics. The corrected dielectric constant (εr-corr) of BaCu2-xCoxSi2O7 ceramics decreased monotonously with the susceptibility (Σχμ) and ionic polarizability of primitive unit cell. The quality factor (Q × f) increased with bond strength and lattice energy (Ucal), especially the lattice energy of the Si-O bond. The temperature coefficient of resonant frequency (τf) was determined by the susceptibility and lattice energy of the Cu/Co-O bond. The following optimum microwave dielectric properties were obtained at x = 0.15 when sintered at 1000 °C for 3 h: εr = 8.45, Q×f =58958 GHz and τf = -34.4 ppm/°C.  相似文献   
16.
Industrialized white organic light-emitting diodes (OLEDs) currently require host-guest doping, a complicated process necessitating precise control of the guest concentration to get high efficiency and stability. Two doping-free, hybrid white OLEDs with fluorescent blue, and phosphorescent green and red emissive layers (EMLs) are reported in this work. An ultra-thin red phosphorescent EML was situated in a blue-emitting electron transport layer (ETL), while the ultra-thin green phosphorescent EML was placed either in the ETL (Device 1), or the hole transport layer (HTL) (Device 2). Device 2 exhibits higher efficiency and more stable spectrum due to the enhanced utilization of excitons by ultra-thin green EML at the exciton generation zone within the HTL. Values of current efficiency (CE), power efficiency (PE), and CRI obtained for the optimized hybrid white OLEDs fabricated through a doping-free process were of 23.2 cd/A, 20.5 lm/W and 82 at 1000 cd/m2, respectively.  相似文献   
17.
The optimization of energy consumption, with consequent cost reduction, is one of the main challenges for the present and future smart grid. Demand response (DR) program is expected to be vital in home energy management system (HEMS) which aims to schedule the operation of appliances to save energy costs by considering customer convenience as well as characteristics of electric appliances. The DR program is a challenging optimization problem especially when the formulations are non-convex or NP-hard problems. In order to solve this challenging optimization problem efficiently, an effective heuristic approach is proposed to achieve a near optimal solution with low computational costs. Different from previously proposed methods in literatures which are not suitable to be run in embedded devices such as a smart meter. The proposed algorithm can be implemented in an embedded device which has severe limitations on memory size and computational power, and can get an optimal value in real-time. Numerical studies were carried out with the data simulating practical scenarios are provided to demonstrate the effectiveness of the proposed method.  相似文献   
18.
Cadmium Sulfide and Ferrous doped Cadmium Sulfide thin films have been prepared on different substrates using an electrodeposition technique. Linear sweep voltammetric analysis has been carried out to determine deposition potential of the prepared films. X-ray diffraction analysis showed that the prepared films possess polycrystalline nature with hexagonal structure. Surface morphology and film composition have been analyzed using Scanning electron microscopy and Energy dispersive analysis by X-rays. Optical absorption analysis showed that the prepared films are found to exhibit Band gap value in the range between 2.3, 2.8 eV for Cadmium Sulfide and Ferrous doped Cadmium Sulfide.  相似文献   
19.
The structural, elastic, and thermodynamic properties of ZnGeP2 with chalcopyrite structure are investigated using the pseudo-potentials plane wave method based on the density functional theory with the generalized gradient approximation. The lattice parameters (a, c and u) are directly calculated and agree well with previous experimental and theoretical results. The obtained negative formation enthalpy shows that ZnGeP2 crystal has strong structural stability. We have also calculated the bulk modulus B and the elastic parameters (C11, C12, C13, C33, C44, and C66) which have not been measured yet. The accuracy and reliability of the calculated elastic constants of ZnGeP2 crystal are discussed. In addition, the pressure and temperature dependencies of the lattice parameters, bulk modulus, Debye temperature, Grüneisen parameter, entropy, volume thermal expansion coefficient, and specific heat capacity are obtained in the ranges of 0–20 GPa and 0–1200 K using the quasi-harmonic Debye model. To our knowledge this is the first quantitative theoretical prediction of the thermodynamic properties for ZnGeP2 compound and still awaits experimental confirmations.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号