首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   45篇
  国内免费   6篇
电工技术   1篇
综合类   3篇
化学工业   241篇
金属工艺   10篇
机械仪表   2篇
矿业工程   1篇
能源动力   65篇
轻工业   3篇
石油天然气   2篇
无线电   41篇
一般工业技术   142篇
冶金工业   4篇
原子能技术   1篇
自动化技术   12篇
  2024年   1篇
  2023年   57篇
  2022年   31篇
  2021年   48篇
  2020年   37篇
  2019年   33篇
  2018年   15篇
  2017年   26篇
  2016年   17篇
  2015年   36篇
  2014年   56篇
  2013年   52篇
  2012年   30篇
  2011年   13篇
  2010年   6篇
  2009年   9篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1982年   1篇
排序方式: 共有528条查询结果,搜索用时 328 毫秒
1.
The construction of heterostructure is an effective strategy to synergetically couple wide-band-gap with the narrow-band-gap semiconductor with a mediate optical property and charge transfer capability. Herein, the Z-Scheme CdS/ZnSnO3 (CdS/ZSO) heterostructures were constructed by anchoring CdS nanoparticles on the surface of double-shell hollow cubic ZnSnO3 via the hydrothermal method. The direct recombination of excited electrons in the conduction band (CB) of ZSO and holes in the valence band (VB) of CdS via d-p conjugation at the interface greatly accelerated the internal electric field (IEF). The transfer mode follows the Z-Scheme mechanism, where CdS/ZSO synergistically facilitates the efficient charges transfer from CdS to ZnSnO3 through the intimate interface. Here, ZnSnO3 and CdS serve as an oxidation photocatalyst (OP) and reduction photocatalyst (RP), respectively. Thus, it can promote synergistically the oxidation half-reaction and reduction half-reaction of H2 evolution. The density-functional theory (DFT) calculation further confirms the charges transfer from CdS to ZnSnO3. The hydrogen evolution of 5% CdS/ZSO heterostructure reached 1167.3 μmol g?1, which was about 8 and 3 folds high compared to pristine ZSO (141.9 μmol g?1) and CdS (315.5 μmol g?1), during 3 h of reaction respectively. Furthermore, the CdS/ZSO heterostructures could suppress the photo corrosion of CdS, resulting in its high stability. This work is expected to enlighten the rational design of heterostructure for OP and RP to promote the hybrid heterostructures photocatalytic H2 evolution.  相似文献   
2.
The demand for high-performance non-precious-metal electrocatalysts to replace the noble metal-based catalysts for oxygen reduction reaction(ORR)is intensively increasing.Herein,single-atomic copper sites supported on N-doped three-dimensional hierarchically porous carbon catalyst(Cu1/NC)was prepared by coordination pyrolysis strategy.Remarkably,the Cu1/NC-900 catalyst not only exhibits excellent ORR performance with a half-wave potential of 0.894 V(vs.RHE)in alkaline media,outperforming those of commercial Pt/C(0.851 V)and Cu nanoparticles anchored on N-doped porous carbon(CuNPs/NC-900),but also demonstrates high stability and methanol tolerance.Moreover,the Cu1/NC-900 based Zn-air battery exhibits higher power density,rechargeability and cyclic stability than the one based on Pt/C.Both experimental and theoretical investigations demonstrated that the excellent performance of the as-obtained Cu1/NC-900 could be attributed to the synergistic effect between copper coordinated by three N atoms active sites and the neighbouring carbon defect,resulting in elevated Cu d-band centers of Cu atoms and facilitating intermediate desorption for ORR process.This study may lead towards the development of highly efficient non-noble metal catalysts for applications in electrochemical energy conversion.  相似文献   
3.
In order to analyze the effect of an epoxidized natural rubber (ENR) and filler treatment on the morphology and behavior of natural rubber (NR) nanocomposites, blends of these polymers have been prepared. The nature and extent of the clay dispersions in the filled samples were evaluated by X-ray diffraction. In the presence of ENR, an exfoliated structure was obtained which suggests that enough rubbery polymer was incorporated into the interlayer spacing. The effect of clay in rubber compounds was analyzed through rheological, mechanical and swelling characterization. A sensible improvement in the nanocomposite properties was observed by the addition of organoclay. It has been deduced that the properties of the compounds strongly depend on the extent of the silicate nanolayers dispersion into the rubber matrices as well as on the organoclay type and elastomer compatibility.  相似文献   
4.
Development of materials with excellent separation performance remains an ongoing challenge in separation science and technology. Herein, a novel strategy was proposed to gradually enhance gas separation performance in micro/nano-materials, by constructing a shell-interlayer-core structure using ionic liquid (triethylenetetramine lactate, [TETA]L) and zeolitic imidazolate framework (ZIF-8). Such structure includes outer [TETA]L shell, interlayer of ZIF-8, and inner [TETA]L core, endowing the composite with more evident molecular sieving separation for CO2 mixtures than the reported materials. A high CO2 adsorption amount (1.53 mmol/g at 298 K and 1.0 bar) is maintained, while the uptakes for CH4 and N2 are very low. Corresponding ideal adsorbed solution theory selectivities are 260–1,990 and 1,688–5,572 for CO2/CH4 and CO2/N2 mixtures at the range of tested pressures. In addition, the separation performance can be controlled by varying the shell-interlayer-core structure with IL inside, outside or on both sides of ZIF-8 and the thickness of outer shell.  相似文献   
5.
In order to improve the flame retardancy and antistatic properties of polyamide 6 (PA6) at as low amount of additives as possible, an integrated-functional additive was synthesized by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and multiwalled carbon nanotubes (MWCNTs). The results showed 2 wt% of DOPO-MWCNTs distributed in PA6 formed an electric network and decreased volume resistivity sharply to 3.1 × 108 Ω cm. In other words, it helped PA6 to get to the percolation threshold of semiconductor. By using of 3 wt% DOPO-MWCNTs, the severe dripping in burning of PA6 was almost controlled. The possible reason was also ascribed to the network formed by evenly dispersed DOPO-MWCNTs, which strengthened the char structure and held severe dripping of PA6. As a result, the heat and smoke release were also suppressed obviously. The most important is that CO release was about half cut in CONE test.  相似文献   
6.
The electron transport layer (ETL) is a critical component in achieving high device performance and stability in organic solar cells. Conjugated polyelectrolytes (CPEs) have become an attractive alternative due to film-forming properties and ease of preparation. However, p-type CPEs generally exhibit poor charge mobility and conductivity, incorporation of electron-withdrawing units forming alternated D-A conjugated backbone can make up for these deficiencies. Herein, the ratio of electron withdrawing moieties are further increased and two poly(A1-alt-A2) typed PIIDNDI-Br and PDPPNDI-Br based on the combination of naphthalene diimide (NDI) with isoindigo (IID) or diketopyrrolopyrrole (DPP) via direct arylation polycondensation are synthesized. These CPEs possess excellent alcohol solubility, a suitable lowest unocuppied molecular orbital energy level, and work function tunability. Surprisingly, the incorporation of IID and DPP units generate distinct self-doping behaviors, which are confirmed by UV–vis absorption and ESR spectra. However, no matter doped or undoped, both CPEs present better charge-transporting properties and conductivity when utilized as ETLs. The PIIDNDI-Br and PDPPNDI-Br display good universal compatibility with the blend of PM6:Y6 and PM6:L8-BO, and PCEs of 18.32% and 18.36% are obtained, respectively, which also present excellent storage stability. In short, the combination of two different acceptors demonstrates an efficient strategy to design highly efficient ETLs for high performance photovoltaic devices.  相似文献   
7.
Developing low-cost and high-efficient bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is greatly significant for water electrolysis. Here, Ni3N-CeO2/NF heterostructure is synthesized on the nickel foam, and it exhibits excellent HER and OER performance. As a result, the water electrolyzer based on Ni3N-CeO2/NF bifunctional catalyst only needs 1.515 V@10 mA cm−2, significantly better than that of Pt/C||IrO2 catalysts. In situ characterizations unveil that CeO2 plays completely different roles in HER and OER processes. In situ infrared spectroscopy and density functional theory calculations indicate that the introduction of CeO2 can optimizes the structure of interface water, and the synergistic effect of Ni3N and CeO2 improve the HER activity significantly, while the in situ Raman spectra reveal that CeO2 accelerates the reconstruction of OV (oxygen vacancy)-rich NiOOH for boosting OER. This study clearly unlocks the different catalytic mechanisms of CeO2 for boosting the HER and OER activity of Ni3N for water splitting, which provides the useful guidance for designing the high-performance bifunctional catalysts for water splitting.  相似文献   
8.
9.
周怡然  肖瑛阁  何烨  曹维宇 《材料导报》2017,31(Z1):305-308
通过在线实时采集预氧化过程中聚丙烯腈纤维二维小角X射线散射(SAXS)花样,利用环化反应导致的电子云密度改变产生的SAXS谱图变化,研究亚微米结构在环化结构形成过程中的温度依赖性。根据所建立的环化及未环化的两相模型,在对散射信息中的微孔结构和长周期结构的叠加信号进行合理分离的基础上,研究了预氧纤维中长周期结构的生成和演变过程。结果表明,预氧化初期产生的环化相与非环化相呈现周期性结构堆砌,并随着温度的进一步升高逐渐趋于均一体系。同时结合相关函数分析方法,计算了长周期结构中环化相和非环化相厚度等结构参数,提出了预氧化程度的小角X射线散射定量表征的方法。  相似文献   
10.
高温石墨化使高强高模碳纤维(CF)表面光滑,反应活性低,导致其复合材料界面粘接性能差。杂原子改性是改善CF表面反应活性的有效手段之一。采用循环伏安(CV)方法在有机复合电解液中对高强高模CF进行了表面氧化和氮化改性,采用CV优选的复合电解液进行恒流电化学氧化处理,研究了CV扫描次数和电解液中含氮有机物对CF表面化学组成的影响。电化学处理前后CF表面化学元素组成和微观形态变化通过XPS、SEM及拉曼光谱表征。基于实验数据探讨了CF表面含氮官能团的生成及转变机制。研究结果显示,有机溶剂、有机氮源和含硫铵盐的协同作用使CF表面N含量从0.28at%增至4.77at%。适量的水存在,可以使CF表面O含量显著提高。CF表面的含氧官能团可以与CO(NH2)2中的-NH2及电解液中的NH4+反应形成酰胺基团,随着反应时间延长,CF表面的酰胺N会先转变成氧化氮,随后转变成吡啶和吡咯N,并最终转换成石墨N。恒流电化学处理后CF/环氧树脂复合材料的层间剪切强度(ILSS)较未处理的提高了132%,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号