首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31400篇
  免费   4662篇
  国内免费   3346篇
电工技术   1982篇
综合类   2705篇
化学工业   4080篇
金属工艺   1085篇
机械仪表   1304篇
建筑科学   138篇
矿业工程   220篇
能源动力   1563篇
轻工业   301篇
水利工程   27篇
石油天然气   81篇
武器工业   233篇
无线电   12130篇
一般工业技术   3886篇
冶金工业   279篇
原子能技术   235篇
自动化技术   9159篇
  2024年   127篇
  2023年   1624篇
  2022年   1337篇
  2021年   1406篇
  2020年   1731篇
  2019年   1273篇
  2018年   1345篇
  2017年   2252篇
  2016年   2219篇
  2015年   1957篇
  2014年   2525篇
  2013年   2510篇
  2012年   3231篇
  2011年   3345篇
  2010年   2095篇
  2009年   2333篇
  2008年   1132篇
  2007年   2114篇
  2006年   1784篇
  2005年   705篇
  2004年   311篇
  2003年   299篇
  2002年   318篇
  2001年   291篇
  2000年   226篇
  1999年   237篇
  1998年   111篇
  1997年   90篇
  1996年   87篇
  1995年   89篇
  1994年   69篇
  1993年   64篇
  1992年   66篇
  1991年   65篇
  1990年   27篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
By leveraging the secret data coding using the remainder storage based exploiting modification direction (RSBEMD), and the pixel change operation recording based on multi-segment left and right histogram shifting, a novel reversible data hiding (RHD) scheme is proposed in this paper. The secret data are first encoded by some specific pixel change operations to the pixels in groups. After that, multi-segment left and right histogram shifting based on threshold manipulation is implemented for recording the pixel change operations. Furthermore, a multiple embedding policy based on chess board prediction (CBP) and threshold manipulation is put forward, and the threshold can be adjusted to achieve adaptive data hiding. Experimental results and analysis show that it is reversible and can achieve good performance in capacity and imperceptibility compared with the existing methods.  相似文献   
22.
Energy bands, effective mass of carriers, absolute band edge positions and optical properties of tetragonal AgInS2 were calculated using a first-principles approach with the exchange correlation described by B3LYP hybrid functional. The results indicate that tetragonal AgInS2 has a direct band gap of 1.93 eV, which reproduce well experimental value. Calculated effective masses of electrons and holes are both small which are beneficial to separation and migration of electron and hole pairs. This implies that AgInS2 has good photocatalytic performance. The calculated optical characteristics indicate that AgInS2 has a slight anisotropy for both the real and imaginary parts of the dielectric function and exhibits large optical absorption in the visible light region. Furthermore, the calculated band edge positions in (100), (010) and (001) surfaces indicate that tetragonal AgInS2 is beneficial to the reduction and oxidation of water to hydrogen and oxygen under visible light irradiation.  相似文献   
23.
The ease of Te sublimation from Bi2Te3-based alloys significantly deteriorates thermoelectric and mechanical properties via the formation of voids. We propose a novel strategy based on atomic layer deposition (ALD) to improve the thermal stability of Bi2Te3-based alloys via the encapsulation of grains with a ZnO layer. Only a few cycles of ZnO ALD over the Bi2Te2.7Se0.3 powders resulted in significant suppression of the generation of pores in Bi2Te2.7Se0.3 extrudates and increased the density even after post-annealing at 500 °C. This is attributed to the suppression of Te sublimation from the extrudates. The ALD coating also enhanced grain refinement in Bi2Te2.7Se0.3 extrudates. Consequently, their mechanical properties were significantly improved by the encapsulation approach. Furthermore, the ALD approach yields a substantial improvement in the figure-of-merit after the post-annealing. Therefore, we believe the proposed approach using ALD will be useful for enhancing the mechanical properties of Bi2Te3-based alloys without sacrificing thermoelectric performance.  相似文献   
24.
A cathodic electrochemical method for the exfoliation of graphite to produce hydrogenated graphenic flakes is introduced. The resulting solutions consist of micrometer-sized and predominantly 1–4 layers thick hydrogenated graphenic flakes. In contrast to oxygenation, chemisorption of hydrogen avoids the formation of structural vacancy defects in the exfoliated flakes. Thermal desorption of hydrogen therefore results in graphenic flakes with a low defect density and consequently good electrical conductivity. Cathodic electrochemical exfoliation offers a remarkably simple and effective technique for the production of high quality graphene flakes and their hydrogenated relatives.  相似文献   
25.
The metal grid and reduced graphene oxide (RGO) are both promising transparent conductive materials for replacing the indium tin oxide (ITO) in flexible optoelectronics. However, the large empty area that exists in the grid together with the relatively high sheet resistance of RGO hinder both the materials for practical applications. In this work, we report for the first time a novel strategy for efficient combination of the metal grid and RGO by using a newly developed room-temperature reduction technique. The obtained RGO/metal grid hybrid films not only overcome the shortcomings of individual components but exhibit enhanced optical and electrical performances (Rs = 18 Ω sq−1 and T = 80%) and excellent flexural endurance. With this hybrid film as the window electrode, a highly flexible electrochromic device with excellent stability and ultra-fast response shorter than 60 ms has been successfully fabricated. Considering its high efficiency, high quality, low cost and large area, the strategy would be particularly useful for economically fabricating various metal grid/RGO films which are quite promising high performance transparent and conductive materials for next generation optoelectronic devices.  相似文献   
26.
Lead-free (K0.5Na0.5)NbO3-based (KNN) piezoceramics featuring a polymorphic phase boundary (PPB) between the orthorhombic and tetragonal phases at room temperature are reported to possess high piezoelectric properties but with inferior cycling stability, while the ceramics with a single tetragonal phase show improved cycling stability but with lower piezoelectric coefficients. In this work, electric biasing in-situ transmission electron microscopy (TEM) study is conducted on two KNN-based compositions, which are respectively at and off PPB. Our observations reveal the distinctive domain responses in these two ceramics under cyclic fields. The higher domain wall density in the poled KNN at PPB contributes to the high piezoelectric properties. Upon cycling, however, a new microstructure feature, “domain intersection”, is directly observed in this PPB composition. In comparison, the off-PPB KNN ceramic develops large domains during poling, which experience much less extent of disruption during cycling. Our comparative study provides the basis for understanding the relation between phase composition and piezoelectric performance.  相似文献   
27.
The lead-free Ba0.53Sr0.47TiO3 (BST) thin films buffered with La0.67Sr0.33MnO3 (LSMO) bottom electrode of different thicknesses were fabricated by pulsed laser deposition method on a (001) SrTiO3 substrate. It was found that the roughness of electrode decreases and substrate stress relaxes gradually with the increase of LSMO thickness, which is beneficial for weakening local high electric field and achieving higher Eb. Therefore, the recoverable energy density (Wrec) of BST films can be greatly improved up to 67.3 %, that is, from 30.6 J/cm3 for the LSMO thickness of 30 nm up to 51.2 J/cm3 for the LSMO thickness of 140 nm after optimizing the LSMO thickness. Furthermore, the thin film capacitor with a 140 nm LSMO bottom electrode shows an outstanding thermal stability from 20 °C to 160 °C and superior fatigue resistance after 108 electrical cycles with only a slightly decrease of Wrec below 1.6 % and 3.7 %, respectively. Our work demonstrates that optimizing bottom electrodes thickness is a promising way for enhancing energy storage properties of thin-film capacitors.  相似文献   
28.
In this work, HA/bioactive glass Functionally Graded Materials (FGMs) are obtained for the first time by means of Spark Plasma Sintering (SPS). Two series of highly dense 5 layered products, namely FGMS1 and FGMS2, are prepared under optimized SPS conditions, i.e. 1000 °C/2 min/16 MPa and 800 °C/2 min/50 MPa, respectively, using a die with varying cross section.Results arising from XRD, SEM, mechanical and biological characterization in SBF, evidence that lower temperature and higher-pressure levels used for FGMS2 samples provide better materials in terms of microstructure, compactness, hardness, elastic modulus and in vitro bioactivity. Indeed, a fully sintered and crack-free microstructure with no crystallisation at the top layer (100% bioactive glass) is correspondingly produced.The obtainment of such FGMs is quite promising, since it permits to vary the relative volume fractions of the two constituents and, consequently, tailor the biological response for specific clinical applications.  相似文献   
29.
《Ceramics International》2020,46(14):22452-22459
Relaxor ferroelectrics have attracted much attention as electric energy storage materials for intermittent energy storage because of their high saturated polarization, near-zero remnant polarizations, and considerable dielectric breakdown strength (BDS). Despite the numerous efforts, the dielectric energy storage performance of relaxor ferroelectric ceramics is incomplete or unsatisfactory. The enhancement of recoverable energy storage density Wrec usually accompanies with the sacrifice of discharge-to-charge energy efficiency η; therefore, it is an important issue to achieve high recoverable Wrec and large efficiency η simultaneously. In this work, the (1-x)BaTiO3-xBi(Zn1/2Zr1/2)O3 (abbreviated as BT-100xBZZ, 0 ≤ x ≤ 0.20) ferroelectric ceramics were prepared using the conventional solid-state reaction method. The phase structure, microstructural morphology, dielectric and ferroelectric properties, relaxation behaviors, and energy storage properties of BT-BZZ ceramics were investigated in detail. X-ray powder diffraction, dielectric spectra, and ferroelectric properties confirm the transformation of tetragonal phase for normal ferroelectrics (BT) to pseudo-cubic phase for relaxor ferroelectrics (BT-8BZZ). A high recoverable energy storage density Wrec of 2.47 J/cm3 and a large energy efficiency η of 94.4% are simultaneously achieved in the composition of BT-12BZZ, which presents typical weakly coupled relaxor ferroelectric characteristics, with an activation energy Ea of 0.21 eV and a freezing temperature Tf of 139.7 K. Such excellent energy storage performance suggests that relaxor ferroelectric BT-12BZZ ceramics are promising dielectric energy storage materials for high-power pulsed capacitors.  相似文献   
30.
Three novel organic dyes adopting fully-fused coplanar heteroarene as the donor moieties end-capped with two cyanoacrylic acids as acceptors and anchoring groups have been synthesized, characterized, and used as the sensitizers for dye-sensitized solar cells (DSSCs). The photophysical and electrochemical properties of the novel dyes and the characteristics of the DSSCs based on the novel organic dyes were investigated. The incorporation of the coplanar cores with electron-donating N-bridges are beneficial for the better intramolecular charge transfer (ICT), giving these new dyes good light-harvesting capability. The LUMO energy levels of these coplanar heteroacene-based dyes are sufficiently high for the efficient electron injection to TiO2 upon photo-excitation, while the suitable HOMOs allow the regeneration of oxidized dyes with the electrolyte redox (I/I3). The structural features of the coplanar cores (penta vs. hexa heteroarene) as well as the alkyl substitutions play crucial roles in governing the physical properties and device performance. Among these three novel organic sensitizers, the EHTt dye composed of a fully fused hexa-arene core and less bulky N-alkyl groups caused the DSSC to show the best photovoltaic performance with an open-circuit voltage (VOC) of 0.58 V, a short-circuit photocurrent density (JSC) of 13.72 mA/cm2, and a fill factor (FF) of 0.69, yielding an overall power conversion efficiency (PCE) of 5.52% under AM 1.5G solar irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号