首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5246篇
  免费   230篇
  国内免费   130篇
电工技术   13篇
综合类   75篇
化学工业   1649篇
金属工艺   1024篇
机械仪表   77篇
建筑科学   13篇
矿业工程   109篇
能源动力   478篇
轻工业   13篇
水利工程   1篇
石油天然气   8篇
武器工业   11篇
无线电   139篇
一般工业技术   1098篇
冶金工业   714篇
原子能技术   19篇
自动化技术   165篇
  2023年   495篇
  2022年   256篇
  2021年   156篇
  2020年   406篇
  2019年   334篇
  2018年   154篇
  2017年   304篇
  2016年   216篇
  2015年   243篇
  2014年   384篇
  2013年   305篇
  2012年   267篇
  2011年   249篇
  2010年   167篇
  2009年   214篇
  2008年   66篇
  2007年   183篇
  2006年   176篇
  2005年   88篇
  2004年   59篇
  2003年   65篇
  2002年   71篇
  2001年   97篇
  2000年   70篇
  1999年   86篇
  1998年   32篇
  1997年   12篇
  1996年   19篇
  1995年   27篇
  1994年   48篇
  1993年   29篇
  1992年   28篇
  1991年   36篇
  1990年   26篇
  1989年   28篇
  1988年   10篇
  1987年   8篇
  1986年   13篇
  1985年   15篇
  1984年   11篇
  1983年   16篇
  1982年   14篇
  1981年   15篇
  1980年   12篇
  1979年   14篇
  1978年   18篇
  1977年   13篇
  1976年   13篇
  1975年   15篇
  1974年   7篇
排序方式: 共有5606条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
2.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
3.
《Ceramics International》2022,48(18):25975-25983
This work reports the innovative development of a borosilicate glass/Al2O3 tape for LTCC applications using an eco-friendly aqueous tape casting slurry. Polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) were the respective dispersants, while carboxymethyl cellulose (CMC) and styrene acrylic emulsion (SA) were the respective binders. The results showed that PVP was more suitable than PAA as the dispersant for the aqueous casting slurry, and that 1.5 wt% PVP would achieve well dispersion of CABS glass/Al2O3 powder in the aqueous slurry. Moreover, a small amount of 2.0 wt% CMC binder could yield smooth CABS glass/Al2O3 tapes crack free. A high-quality CABS glass/Al2O3 tape with a smooth surface was made from an aqueous slurry containing 1.5 wt% PVP dispersant, 2.0 wt% CMC binder, and 2.0 wt% PEG-400 plasticizer. The density, tensile strength, and surface roughness of the green tape were 2.05 g/cm3, 0.87 MPa, and 148 nm, respectively. The resulting CABS glass/Al2O3 composites sintered at 875 °C exhibited a bulk density of 3.14 g/cm3, a dielectric constant of 8.09, a dielectric loss of 1.0 × 10?3, a flexural strength of 213 MPa, a thermal expansion coefficient of 5.30 ppm/°C, and a thermal conductivity of 3.2 W m?1 K?1, thus demonstrating its broad prospects in LTCC applications.  相似文献   
4.
This paper carefully evaluates the electrocatalytic activity of Sr2FeMo0.5Mn0.5O6 (SFMM) double perovskite as a candidate to substitute the state-of-the-art Ni/YSZ fuel electrode. The electrochemical performance of a 40% SFMM/CGO composite electrode was studied in CO/CO2 and H2 with different oxygen partial pressure. Two different cell configurations are prepared at a relatively low temperature of 800 °C to increase the electrochemically active surface area. The cell was supported with a 150 μm 10Sc1CeSZ electrolyte in the first configuration. The cell in the second configuration was made by applying a 400 nm thin 8YSZ layer on 150 μm CGO electrolyte to improve the electrolyte ionic conductivity. Improving catalytic activity with increasing oxygen partial pressure is a key characteristic of the developed electrode. The polarization resistance of about 0.34 and 0.56 Ω cm2 at 750 °C in 3%H2O + H2 and 60% CO/CO2 makes this electrode a promising candidate for SOCs application.  相似文献   
5.
The total energies of Laves phases in the Cr–Nb and Zr–Cr systems have been calculated by the pseudo-potential VASP code with a full relaxation of all structural parameters. The special quasirandom structures (SQSs) have been constructed and their total energies have been calculated by the VASP code to predict the enthalpies of mixing for bcc and hcp solid solution phases. The phonon calculations for the C14 and C15 Laves phases have been performed to analyze the phase stability at elevated temperatures. The experimental study on the Zr–Cr system has been carried out at different temperatures to determine the phase boundaries. Based on these results, thermodynamic models of Cr–Nb and Zr–Cr with extension to the ternary Zr–Nb–Cr systems have been developed in this work by using the CALPHAD approach.  相似文献   
6.
7.
In this work, TiO2 nanoparticles are surface modified by NH2-terminated organic moieties arised from 4,4′-methylene diphenyl diisocyanate (MDI). These nanoparticles are incorporated into ether-based segmented polyurethane (SPU) matrix. MDI is utilized as monomer together with poly(tetramethylene oxide) (PTMO) comonomer for preparing the final polymer as well. The NH2-functionalized TiO2 nanoparticles are covalently linked to the NCO terminals of the resulting SPU macromolecules during film preparation stage. Therefore, in addition to butylene glycol, these surface modified nanoparticles with enhanced organophilicity could play the role of the second chain extender of NCO-capped SPU macromolecules through formation of urea linkages. Optical and thermal behaviors of the transparent and flexible film (SPU/TiO2–MDI) is compared with those of unmodified TiO2 (SPU/TiO2) and TiO2-unloaded SPU films. Though the particle loading is only 5 wt.%, incorporation of TiO2 and TiO2–MDI nanoparticles into the SPU polymer enhances significantly the light absorption in UV region at 300–400 nm. SEM images of the prepared films clearly show a considerable decrease in particle aggregation for TiO2–MDI into SPU matrix compared to that of unmodified TiO2. TG analyses indicate a one-step decomposition pattern with onset temperatures of about 360 and 380 °C for neat SPU and SPU/TiO2–MDI, respectively. Moreover, DTA thermograms of both nanocomposites show obviously two exothermic phase transitions in the thermal range of 330–440 °C.  相似文献   
8.
Crack initiation and propagation in three braided SiC/SiC composite tubes with different braiding angles are investigated by in situ tensile tests with synchrotron micro-computed tomography. Crack networks are precisely detected after an image subtraction procedure based on Digital Volume Correlation. FFT based simulations are performed on the full-resolution 3D images to assess elastic stress/strain fields. Quantitative measurements of the crack geometries are performed using a novel method based on grey levels. The results show that braiding angle has no obvious effect on the location of crack onsets (initiation always occurs at tow interfaces), whereas it significantly affects the paths of crack propagation. This work provides an explicit demonstration of the crack propagation scenarios with respect to the mesoscopic fibre architectures.  相似文献   
9.
In this work, three dimensional (3D) NixCo1−xS2/graphene composite hydrogels with different Ni contents (denoted as NixCo1−xS2/GH (x = 0, 0.31, 0.56, 0.66, 1)) have been synthesized by a simple one-step hydrothermal method and utilized as the active materials of supercapacitors. The as-prepared samples present a 3D interconnected porous network with the pore sizes in the range of several to tens micrometers. Interestingly, the NixCo1−xS2 particles are uniformly located on the graphene network and the particle size is evolved from ∼50 nm to ∼1.5 μm with the increase of Ni content. The electrochemical measurements revealed that the specific capacitance, rate capability and cyclability of different NixCo1−xS2/GH electrodes are strongly affected by their different Ni content. Among these, the 3D Ni0.31Co0.69S2/GH composite has the highest specific capacitance of 1166 F/g at a current density of 1 A/g. Furthermore, a specific capacitance of 559 F/g can be still maintained at high current density of 20 A/g. After 1000 charge–discharge cycles at 5 A/g, the specific capacitance remains a high value of 755 F/g.  相似文献   
10.
As a figure-of-merit, the rising ratio of crack propagation resistance to fracture initiation resistance indicates a reduction of the brittleness and enhances the thermal shock resistance of ordinary refractory ceramics. The significant nonlinear fracture behaviour is related to the development of a fracture process zone (FPZ). The universal dimensionless load–displacement diagram method is applied as a promising graphical method for the determination of R-curves for magnesia refractories showing different brittleness. By applying digital image correlation (DIC) together with the graphical method, the problems arisen with accurate determination of the fracture initiation resistance and the crack length are overcome. Meanwhile, the R-curve is subdivided with respect to the fracture processes, viz the fracture initiation, the development of FPZ and the onset of traction free macro-crack. With the simultaneous crack lengths evaluated from DIC, the contribution of each fracture process to the crack propagation resistance at certain loading stage is quantitatively presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号