首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   2篇
  国内免费   3篇
化学工业   104篇
金属工艺   21篇
机械仪表   5篇
矿业工程   2篇
能源动力   38篇
无线电   18篇
一般工业技术   46篇
冶金工业   12篇
自动化技术   8篇
  2023年   32篇
  2022年   6篇
  2021年   10篇
  2020年   31篇
  2019年   23篇
  2017年   21篇
  2016年   12篇
  2015年   10篇
  2014年   11篇
  2013年   18篇
  2012年   8篇
  2011年   4篇
  2010年   6篇
  2009年   2篇
  2008年   1篇
  2007年   10篇
  2006年   16篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   8篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有254条查询结果,搜索用时 31 毫秒
81.
We recently discovered that mixed-anion Br–I elpasolite scintillators, Cs2NaYBr3I3: Ce and Cs2NaLaBr3I3: Ce, have promising performance. Ce concentration of these compounds was optimized in terms of light yield. Cs2NaLaBr3I3 with 5% Ce (by mole) has a light yield of 58,000 ph/MeV, and excellent energy resolution of 2.9% at 662 keV. It is better than both endpoint compounds of the Br–I solid solution. Cs2NaYBr3I3 with 2% Ce doping shows energy resolution of 3.3% at 662 keV, despite a relatively modest light yield of 43,000 ph/MeV. Non-proportionality of the mixed Br–I compounds was measured using gamma ray sources ranging in energy from 14 keV to 835 keV.The electronic band gaps of undoped Cs2NaLaBr3I3 and Cs2NaYBr3I3 were determined from optical transmittance and absorbance measurements. The band gaps of the compounds are 4.4 ± 0.1 eV, and 4.3 ± 0.1 eV, respectively.The crystal structures of Cs2NaLaBr3I3: Ce and Cs2NaYBr3I3: Ce are tetragonal and cubic respectively. The high symmetry leads to fewer cracks during crystal growth and minimizes light scattering at grain boundaries. The ease of crystal growth is promising for the scale-up of the growth process to larger sizes.  相似文献   
82.
《Ceramics International》2019,45(12):14928-14933
In this paper, GdFeO3 thin films with high orientation and heavily Ce3+ doping were deposited by radio frequency magnetron sputtering with a matching substrate. The effects of substrates and Ce3+ doping on the structure, magnetic and magneto-optical properties of thin films were investigated. As a result, Ce3+ doping can not only increase the saturation magnetization but also greatly enhance the magnetic circular dichroism signals of Ce:GdFeO3 thin films. Based on the density functional theory calculation, it can be found that the probability of electron transition between Ce3+ 4f and Fe3+ 3d and the difference in the absorption of right and left circularly polarized light increase, which results in the strong magneto-optical effect of Ce:GdFeO3/STO thin films.  相似文献   
83.
Copper–zinc–tin-sulfide (Cu2ZnSnS4, abbreviated as CZTS) is a direct band gap p-type semiconductor material with high absorption coefficient. Using oleylamine as solvent/stabilizing agent and metal chlorides and sulfur particles as chemical precursors, CZTS based nanoparticles were produced and subsequently deposited as thin films on glass substrates via spin coating of the nanoinks. The effect of temperature on crystallite size and phase composition was assessed after the solution mixture was undercooled by 30, 70 or 90 °C. Upon cooling the solution from 230 to 140 °C i.e. by 90 °C, maximum refinement in the nanoparticles size was noticed with average size on the order of few nanometers. The morphological and compositional studies of the nanoparticles were performed by means of scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Phase-pure CZTS formation was confirmed from fast Fourier transform (FFT) patterns and lattice fringes observed during HR-TEM examination. Characterization of the annealed spin coated films, made from nanoink containing ultrafine nanoparticles, indicated morphological changes in the film surface during air annealing at 350°C that can be attributed to depression of CZTS phase decomposition temperature. Spectrophotometric studies of the annealed films suggested quantum confinement effect through an associated increase in the band gap value from 1.34 to 2.04 eV upon reduction in the nanoparticle size caused by increasing the degree of undercooling to 90 °C.  相似文献   
84.
Solid oxide fuel cells (SOFCs) with direct internal reforming (DIR) provide a promising method to realize clean and efficient utilization of hydrocarbon fuels. Thse endothermic reforming reactions occur simultaneously with exothermic electrochemical reactions at the anode, making thermal neutral state achievable inside a fuel cell, providing reference to the thermal management. In this study, a calculation model combining experimental data and thermodynamic results was established, validating the possibility of achieving thermal neutral state in DIR-SOFCs. In the process of modeling, the electrochemical and thermodynamic characteristics in direct internal steam and dry reforming were elaborately compared, contributing to a more scientific understanding of anode reaction mechanism. Detailed experimental investigation was carried out to determine the influence of H2O/CO2 on the electrochemical properties of DIR-SOFCs, based on which the optimum steam-carbon ratio (S/C) and CO2 to CH4 ratios were obtained. Besides, analysis of distribution of relaxation times (DRT) combined with elementary reactions in CH4H2O and CH4CO2 atmospheres were proposed to distinguish different physical and chemical processes within anodes. The results of this study can be conducive to a more precise understanding of reaction mechanism on SOFC anodes and meaningful for practical application of DIR-SOFCs.  相似文献   
85.
《Ceramics International》2023,49(8):12105-12115
In this study, iron(III) oxide (Fe2O3)-doped zirconia (3Y-TZP) ceramics with desirable mechanical and color properties for dental restorations were fabricated by stereolithography-based additive manufacturing. Six zirconia ceramic paste specimens with high solid loading (58 vol%) and reasonably low viscosity were prepared according to doped content of Fe2O3 (0–0.14 wt%). Zirconia ceramics were fabricated using commercial stereolithography three-dimensional printer and sintered at 1500 °C for 4 h to obtain final dense parts with a relative density of above 99%. Effects of Fe2O3 doping on microstructure, mechanical properties, and color of 3Y-TZP ceramics were investigated. Results indicate that Fe2O3 exhibited little effect on the shrinkage and density of colored ceramics compared to uncolored ceramics. Average grain size of 3Y-TZP ceramics sintered at 1500 °C increased with increasing content of Fe2O3. X-ray diffraction analysis showed that tetragonal phase was dominant phase structure of white and colored 3Y-TZP ceramics, and monoclinic phase increased with increasing Fe2O3 content. Compared to uncolored specimens, Fe2O3 exhibited negative effects on three-point flexural strength (mean > 879.70 MPa), Vickers hardness (mean > 12.14 GPa), and indentation fracture toughness (mean > 4.23 MPa m1/2) of the colored specimens. With the increase in the content of Fe2O3 from 0 to 0.14 wt%, L* (black–white index) value decreased from 83.39 to 79.54, a* (green–red index) value increased from −2.28 to −0.74, and b* (blue–yellow index) value increased from 1.15 to 17.94. Chromaticity (L*, a*, b*) fell within the range of natural tooth color, indicating that it is suitable for dental application because of its color compatibility with natural teeth. In addition, the transmittance slightly decreased with increasing Fe2O3 content. Thus, Fe2O3-doped 3Y-TZP ceramics can be used as potential candidates for aesthetic dental restoration materials.  相似文献   
86.
《Ceramics International》2023,49(12):19806-19816
Aluminium titanate (Al2TiO5, AT) flexible ceramics were prepared from Al2O3–TiO2 powder system with MgO and Fe2O3 as additives through solid-state method. The effects of addition level of MgO and Fe2O3 on phase compositions, sintering behavior, microstructure and fracture properties of AT flexible ceramics were systematically investigated. The experimental results show that the introduction of additives can promote the formation of AT and improve the densification by forming solid solution. The addition of MgO could effectively refine AT grains since the formed MgAl2O4 spinel grains could pin at the AT grain boundary and inhibit the growth of AT grains. Conversely, the addition of Fe2O3 could promote the AT grain growth. And the simultaneous addition of MgO and Fe2O3 is beneficial to develop elongated rod-like AT grains. With that, the improved fracture properties can be obtained. Due to pining effect of spinel and better densification, the flexural strength of modified AT flexible ceramics is about 34 times higher than that of virgin. In addition, thanks to the microcracked structure and high grain aspect ratio, events of crack deflection, crack branching, grains pull-out and grains bridging are more likely to occur, leading to an increase in the flexibility by about 133%.  相似文献   
87.
The transition from the cubic to monoclinic phase of Gd2O3 at high temperatures poses a significant challenge to the preparation of transparent Gd2O3 materials. In this work, we presented a straightforward yet effective method for fabricating transparent Gd2O3 ceramics. Via ZrO2 stabilization effect for phase structure, highly transparent Gd2O3 ceramics were successfully fabricated by vacuum sintering at 1850 °C for 8 h. The effect of different Zr (0 ∼ 13 at%) concentrations on phase transition, grain growth, fracture mode and optical properties of Gd2O3 transparent ceramics was investigated. As the Zr content increases, the transition from the cubic (C) to monoclinic (M) phase is effectively suppressed, which is crucial for achieving Gd2O3 transparent ceramics. Moreover, the results indicate that the addition of ZrO2 has a significant effect on grain growth by not only impeding the migration of grain boundaries but also affecting the phase composition. In addition, the 11 at% Zr-doped Gd2O3 ceramic exhibits the best optical properties, of which transmittance is about 76% at 850 nm and about 80% in the 2.5 µm ∼ 6 µm mid-infrared range. This work provides an illustrative example for the development of other ceramics with phase transition. The obtained Zr-doped Gd2O3 transparent ceramics with high optical quality are potential candidates for optical window, scintillator host and mid-infrared transmission materials.  相似文献   
88.
《Materials Research Bulletin》2013,48(11):4531-4537
In this study, we demonstrate a green approach for the synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Rosmarinus officinalis under ambient conditions. The uniqueness of this method lies in its rapid synthesis within 15 min. The synthesized AgNPs were characterized using UV–vis, FTIR, XRD, FE-SEM coupled with EDX, TEM and AFM. The synthesized particles were found to be 14.20–42.42 nm with face centered cubic geometry. The functional group of flavonoids and terpenoids was largely identified by FTIR which was found to be responsible for the synthesis and stabilization of the AgNPs. Further, antibacterial efficacy of the biologically synthesized AgNPs was investigated by the standard method against Pseudomonas aeruginosa and Staphylococcus aureus. The results showed that the aqueous leaf extract mediated synthesized AgNPs is an excellent antibacterial agent against clinical pathogens.  相似文献   
89.
《Materials Research Bulletin》2013,48(11):4733-4737
This study investigates the emission properties of the Er3+/Nd3+ ions codoped 70GeS2–10In2S3–20CsBr chalcohalide glasses. The vacuumed melt-quenching technique is employed to synthesize the glasses. The absorption spectra, upconversion and near-IR emission spectra as well as fluorescence decay curves are collected. With the increasing concentration of Er3+ ions, the lifetimes at 1073 nm for Nd3+ ions decrease from 538 to 420 μs under 808 nm excitation. Meanwhile, the lifetimes at 1540 nm for Er3+ ions decrease from 245 to 214 μs with the increasing concentration of Nd3+ ions. The emission spectra and lifetimes show that energy transfer exists between the Nd3+ and Er3+ ions. The luminescence and detailed energy transfer mechanisms are schematically proposed.  相似文献   
90.
《Ceramics International》2016,42(11):13018-13023
Yb3+ doped ZnO/MgO nanocomposite were prepared by combustion synthesis method. The samples were further heated to 1000 °C to improve their crystallinity and photoluminescent efficiency. The concentrations of Yb3+ and Mg2+ were varied between 1–2% and 5–70% respectively in prepared samples. The nano-powders were characterized by Scanning Electron Microscopy and X-ray Diffraction for morphology and structural determination. XRD studies have revealed the wurtzite structure for MgxZn1−xO for Mg concentrations below 30%. Higher concentrations of Mg results in Yb3+ doped ZnO/MgO nanocomposite containing three phases; the wurzite hexagonal phase typical of ZnO, the cubic phase of MgO and a small amount of cubic Yb2O3 phase. As expected, the amount of cubic phase in nano-powders increased with the increase of Mg concentration in ZnO. The crystallite size of ZnO/MgO composites decreased from 55 nm to 30 nm with increase of Mg content. SEM images of Yb3+ doped ZnO/MgO nanocomposite with higher Mg content (>50%) showed clearly distinct hexagonal and cubical shaped nano-particles. Photoluminescent emission showed a broad band in the range (435 nm to 700 nm). Pure ZnO nano-phosphor showed an emission peak around 545 nm, which is blue shifted with Mg content. The photoluminescence intensity increased with increase of Mg content in ZnO and it became maximum with 30% Mg concentration. Time resolved decay curves of photoluminescence indicated decay time in microsecond time scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号