首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64474篇
  免费   4867篇
  国内免费   1720篇
电工技术   510篇
技术理论   1篇
综合类   2839篇
化学工业   31212篇
金属工艺   2580篇
机械仪表   848篇
建筑科学   604篇
矿业工程   963篇
能源动力   6743篇
轻工业   5375篇
水利工程   117篇
石油天然气   2346篇
武器工业   172篇
无线电   2473篇
一般工业技术   10207篇
冶金工业   1353篇
原子能技术   238篇
自动化技术   2480篇
  2024年   151篇
  2023年   2630篇
  2022年   1865篇
  2021年   2316篇
  2020年   3233篇
  2019年   2697篇
  2018年   1999篇
  2017年   2612篇
  2016年   3021篇
  2015年   3302篇
  2014年   5406篇
  2013年   5922篇
  2012年   5657篇
  2011年   5573篇
  2010年   3890篇
  2009年   4149篇
  2008年   1886篇
  2007年   3542篇
  2006年   2883篇
  2005年   1368篇
  2004年   678篇
  2003年   749篇
  2002年   872篇
  2001年   799篇
  2000年   605篇
  1999年   604篇
  1998年   298篇
  1997年   148篇
  1996年   268篇
  1995年   242篇
  1994年   172篇
  1993年   132篇
  1992年   137篇
  1991年   138篇
  1990年   147篇
  1989年   166篇
  1988年   227篇
  1987年   31篇
  1986年   27篇
  1985年   29篇
  1984年   58篇
  1983年   36篇
  1982年   51篇
  1981年   45篇
  1980年   31篇
  1979年   40篇
  1978年   27篇
  1976年   36篇
  1973年   26篇
  1951年   32篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
72.
Three-dimensional (3D) highly interconnected graphitized macroporous carbon foam with uniform mesopore walls has been successfully fabricated by a simple and efficient hydrothermal approach using resorcinol and formaldehyde as carbon precursors. The commercially available cheap polyurethane (PU) foam and Pluronic F127 were used as a sacrificial polymer and mesoporous structure-directing templates, respectively. The graphitic structure of carbon foam was obtained by catalytic graphitization method using iron as catalyst. Three different carbon foams such as graphitized macro-mesoporous carbon (GMMC) foam, amorphous macro-mesoporous carbon (AMMC) foam and graphitized macroporous carbon (GMC) foam were fabricated and their physicochemical and mechanical properties were systematically measured and compared. It was found that GMMC possess well interconnected macroporous structure with uniform mesopores located in the macroporous skeletal walls of continuous framework. Besides, GMMC foam possesses a well-defined graphitic framework with high surface area (445 m2/g), high pore volume (0.35 cm3/g), uniform mesopores (3.87 nm), high open porosity (90%), low density (0.30 g/cm3) with good mechanical strength (1.25 MPa) and high electrical conductivity (11 S/cm) which makes it a promising material for many potential applications.  相似文献   
73.
We report a simple route to synthesize iron carbide/carbon yolk–shell composite via a facile two-step process including polymerization of pyrrole using Fe3O4 as a sacrificial template to form a Fe3O4/polypyrrole composite, followed by annealing at high temperature in N2 atmosphere. The yolk–shell composite, with iron carbide (Fe2.5C) embedded in nitrogen-doped carbon layers, shows impressively high catalytic activity and stability for oxygen reduction reaction in alkaline solution. Both the pyridinic-N and graphic-N in the shell of Fe3O4–PPy-700, together with the Fe2.5C confined in carbon layers are believed to be the active sites for the ORR.  相似文献   
74.
In the present work, we report a chemically modified polyacrylamide/silica nanoporous composite adsorbent for the removal of reactive black 5 (RB5) azo dye from aqueous solutions. The composite adsorbent was synthesized in a packed bed and modified by ethylenediamine (EDA). The adsorbent was characterized by Fourier transformation infrared (FT-IR), thermogravimetric analysis (TGA), thermoporometry, Brunauer, Emmett and Teller (BET) method and scanning electron microscopy (SEM). Mechanical stability of the adsorbent was examined in a packed bed by following the back-pressure of the column. Pore diameter of the composite adsorbent in dry and wet states was estimated to be about 18.71 nm and 12.61 nm, respectively. Adsorption experiments were performed in batch mode and effect of various operational parameters on the adsorption capability of the adsorbent was studied systematically. The maximum adsorption capacity of the modified composites was found to be 454.5 mg RB5/g of adsorbent. The equilibrium data were analyzed by Langmuir, Freundlich, Sips, BET and Redlich–Peterson isotherm models and found to fit well to the BET isotherm. The data kinetically followed the pseudo-second-order model. High adsorption capacity, fast removal mechanism, and good mechanical stability are three advantages of the presented composite for the removal of RB5.  相似文献   
75.
The visible light driven Bi2MoO6 photocatalyst doped with different contents of Ag nanoparticles was successfully synthesized by a combination of hydrothermal and sonochemical methods. The as-synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy (SEM and TEM) and UV–visible spectroscopy to investigate crystalline structure, morphology, composition and photocatalytic properties. XRD patterns and TEM images of the samples revealed pure phase orthorhombic Bi2MoO6 nanoplates without any detection of Ag dopant due to its low concentration and very tiny particle size. TEM images showed that Ag nanoparticles with the size of 10–15 nm were dispersed randomly on the surface of Bi2MoO6. The XPS analysis of Ag/Bi2MoO6 nanocomposites revealed the presence of additional metallic Ag. Photocatalytic activities of the Ag/Bi2MoO6 nanocomposites were evaluated by determining the degradation of rhodamine B (RhB) under visible light radiation. In this research, the 10 wt% Ag/Bi2MoO6 nanocomposites showed the best photocatalytic activity. The results suggest that the dispersion of Ag nanoparticles on the surface of Bi2MoO6 significantly enhances its photocatalytic activity.  相似文献   
76.
《Ceramics International》2019,45(10):13409-13413
We report an industrially viable promising approach to produce micrometer-sized multilayer graphene nanoplatelet powder (MGNP) in a scalable quantity via microwave-assisted exfoliation of graphite (MEG) and fragmented into MGNP through liquid-phase exfoliation in the co-solvent mixture by kitchen mixer (KM). KM allows rapid delaminating MEG into MGNP by shear force dominated exfoliation. Majority of MGNPs are with a diameter of few micrometers and thickness is in nanometers. MGNP are crystalline with very limited defects was confirmed by Raman measurements and transmission electron microscopy. This process transforms, more than 86% of graphite flakes into MGNP. This advanced approach opens a new pathway to produce MGNP in bulk quantity as it is feasible, rapid, and cost-effective.  相似文献   
77.
It was well known that solvent effect plays a very important role in the catalytic reaction. There are many theoretical studies on the solvent effect in homogeneous catalysis while there are few theoretical studies on the solvent effect in the heterogeneous catalytic reaction and there has been no work to investigate the solvent effect on furfural transformation in heterogeneous catalysis. In the present work, both the density functional calculations and the microkinetic analysis were performed to study the selective hydrogenation of furfural over Pt(111) in the presence of methanol as well as toluene and compared with that in the gas condition. The present results indicated that the methanol can enhance the adsorption strength of furfural and other oxygen-containing reaction species due to its relatively strong polarity properties and this can be a main reason for solvent-induced high activity and selectivity. Another reason is that reaction paths study showed that the presence of methanol solvent makes the dehydrogenation of furfural less thermochemical due to the fact that furfural is more stabilized than that of dehydrogenation species, and methanol also has an inhibition effect on the dehydrogenation of furfural in the kinetic aspect, and further energetic span theory proves highest activity and selectivity for hydrogenation in methanol solvent of vapor, methanol and toluene. Moreover, microkinetic model simulation demonstrated that the activity and selectivity of hydrogenation in methanol is both higher than that in vapor and toluene. The much higher activity in methanol is due to the stabilized adsorbed reactants in the surface, which leads to a higher surface coverage of furfural. It might be proposed based on the present work that a solvent with relatively strong polarity may be favorable for the high selective hydrogenation of furfural.  相似文献   
78.
The effect of charge on the dihydrogen storage capacity of Sc2–C6H6 has been investigated at B3LYP-D3/6-311G(d,p) level. The neutral system Sc2–C6H6 can store 8H2 with gravimetric density of 8.76 wt %, and one H2 dissociates and bonds atomically on the scandium atom. The adsorption of 8H2 on Sc2–C6H6 is energetically favorable below 155 K. The atom-centered density matrix propagation (ADMP) molecular dynamics simulations show that Sc2–C6H6 can adsorb 3H2 within 1000 fs at 300K. Compared with Sc2–C6H6, the charged systems can adsorb more hydrogen molecules with higher gravimetric density, and all the H2 are adsorbed in the molecular form. The gravimetric densities of Sc2–C6H6+ and Sc2–C6H62+ are 9.75 and 10.71 wt%. Moreover, the maximum adsorption of charged systems are favorable in wider temperature range. Most importantly, the ADMP-MD simulations indicate that Sc2–C6H62+ can adsorb 6 hydrogen molecules within 1000 fs at 300K. It can be found that the gravimetric density (6.72 wt%) of Sc2–C6H62+ still exceeds the target of US Department of Energy (DOE) under ambient conditions.  相似文献   
79.
Flow field structure can largely determine the output performance of Polymer electrolyte membrane fuel cell. Excellent channel configuration accelerates electrochemical reactions in the catalytic layer, effectively avoiding flooding on the cathode side. In present study, a three-dimensional, multi-phase model of PEMFC with a 3D wave flow channel is established. CFD method is applied to optimize the geometry constructions of three-dimensional wave flow channels. The results reveal that 3D wave flow channel is overall better than straight channel in promoting reactant gases transport, removing liquid water accumulated in microporous layer and avoiding thermal stress concentration in the membrane. Moreover, results show the optimal flow channel minimum depth and wave length of the 3D wave flow channel are 0.45 mm and 2 mm, respectively. Due to the periodic geometric characteristics of the wave channel, the convective mass transfer is introduced, improving gas flow rate in through-plane direction. Furthermore, when the cell output voltage is 0.4 V, the current density in the novel channel is 23.8% higher than that of conventional channel.  相似文献   
80.
Chen  Yaqi  Wu  Xiaoren  Liu  Qing  He  Maoshuai  Bai  Hongcun 《Catalysis Letters》2022,152(9):2738-2744

This work proposed a new path to synthesize Ni-phyllosilicate through the reaction of nickel hydroxide and silica sol on the surface of Ni-foam to form the monolithic Ni-phyllosilicate/Ni-foam catalyst. Ni-phyllosilicate could reprint the morphology of nickel hydroxid and firmly anchor on the framework of Ni-foam, which obtained fine Ni particles of 2.8 nm after reduction in H2 at 650 °C, resulting in high catalytic activity for CO2 methanation. In addition, the Ni-phyllosilicate/Ni-foam catalyst showed high long-term stability in a 100 h-lifetime test owing to the combined effects of surface confinement of Ni-phyllosilicate, firm anchoring between Ni-phyllosilicate and Ni-foam, as well as the high heat transfer property of Ni-foam.

Graphical Abstract
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号