首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   0篇
  国内免费   1篇
电工技术   1篇
化学工业   86篇
金属工艺   11篇
机械仪表   1篇
建筑科学   3篇
矿业工程   1篇
能源动力   27篇
轻工业   3篇
无线电   17篇
一般工业技术   38篇
冶金工业   12篇
自动化技术   5篇
  2024年   1篇
  2023年   33篇
  2022年   18篇
  2021年   6篇
  2020年   16篇
  2019年   8篇
  2017年   18篇
  2016年   10篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   7篇
  2011年   1篇
  2010年   8篇
  2009年   2篇
  2008年   1篇
  2007年   10篇
  2006年   10篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   4篇
排序方式: 共有205条查询结果,搜索用时 138 毫秒
51.
Amorphous silicon carbide with unique porous structures was synthesised from three biological templates (egg shell membrane, butterfly wing and sea urchin skeleton) using liquid phase infiltration with polycarbosilane at atmospheric pressure followed by heating to 1000 °C under N2. The structure and porosity of the preform was largely reproduced in the final material, although with egg shell membrane the cellular structure of the preform was compromised after infiltration and heating. The SiC yield of the final material was linearly correlated with the number of infiltration steps in the case of egg shell membrane and butterfly wing. Infiltration of the sea urchin shell was unsuccessful.  相似文献   
52.
采用陶瓷工艺制备高频MnZn功率铁氧体材料,研究了MoO3添加对材料微结构和磁性能的影响。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)表征材料结构,用B-H分析仪测试材料磁性能,并对材料功率损耗进行分离。结果表明,适量添加MoO3可以有效改善材料的微观结构,提高致密度,提高材料饱和磁通密度和起始磁导率,降低功率损耗。功耗分离后发现,随着MoO3添加量的增加,磁滞损耗比例下降,涡流损耗所占比例上升。最佳MoO3添加量为0.01 wt%,获得低功耗的MnZn功率铁氧体,100℃、500kHz、50mT条件下功耗为86 kW/m3,起始磁导率约为1928,25℃下的饱和磁通密度为513 mT。  相似文献   
53.
54.
《Optical Materials》2013,35(12):2041-2044
The upconversion luminescence spectra of nanocrystallite MgAl2O4 doped with 1% of Ho3+ and 5% of Yb3+ ions after excitation at 980 nm were measured. Influence of excitation regime either continuous or pulse on upconversion mechanisms was shown. For continuous wave (CW) laser excitation upconversion process is due to phonon assisted Excited State Absorption (ESA). For pulse laser excitation upconversion emission is due to Energy Transfer Upconversion (ETU).  相似文献   
55.
Undoped and La2O3doped (0.5, 1.0, 2.0, 3.0 wt.%) Ba0.55Sr0.45TiO3/MgO composites were prepared by traditional ceramic processing and their structural, surface morphological, tunable properties and their dielectric properties at low frequency and microwave frequency were systemically examined. The result shows that La2O3 dopant has a strong effect on the average grain size. The La2O3 doped samples have lower temperature coefficient of capacitance than the undoped. The 0.5 wt.% La2O3 doped sample has a little higher tunability than the undoped and the tunability of other doping concentration samples is lower as compared to the undoped. The addition of La2O3 decreases the dielectric constant and increases quality factor (Q × f) at microwave frequency. The 0.5 wt.% La2O3 doped samples have the best properties among these samples and have a higher tunability, lower dielectric constant and lower dielectric loss tangent at microwave frequency and these properties are very beneficial to the development of the tunable devices application.  相似文献   
56.
《Materials Research Bulletin》2006,41(7):1378-1384
The exploration of the Li–Ti–Mg–O system, using both sol–gel technique and solid state reaction method, allowed a new phase, Li2MgTiO4, with disordered rock salt structure (a = 4.159 Å) to be synthesized. The latter is shown to be a good type I dielectric material, with a relative constant of 15 at high frequency and low dielectric loss (tanδ < 10−3) over the temperature range −60 to 160 °C. It is also observed that the sintering temperature of this phase is strongly lowered by adopting the sol–gel technique compared to solid state reaction (1150 °C instead of 1300 °C). Finally we show that this phase exhibits cationic conductivity above 400 °C (σ600 °C = 9 × 10−5 S cm−1).  相似文献   
57.
Z-type Sr3Co2Fe24O41 hexaferrites (Co2Z hexaferrites) were synthesized with sol–gel method and were mechanically mixed with spherical Fe88Si7Cr2.5B2.5 (FeSiCrB) amorphous powders, and then compacted to form toroidal Co2Z hexaferrites/FeSiCrB amorphous soft magnetic composites (Co2Z/FeSiCrB SMCs). The compositions, morphology and soft magnetic performance were characterized through SEM, XRD, VSM, EDS, B-H analyzer and impedance analyzer. All results reveal that Co2Z hexaferrites in Co2Z/FeSiCrB SMCs should mainly exist in air gaps between spherical FeSiCrB amorphous powders, leading to the increasing density. Saturation magnetization decreases a little for magnetic dilution and coercivity increases for the stronger magnetic interaction of Co2Z/FeSiCrB SMCs. The introduction of Co2Z hexaferrites in air gaps increases the conduction area of magnetic circuits and decreases the demagnetization effect, leading to the higher effective permeability of 27.4 for Co2Z/FeSiCrB SMCs, much higher than 25.0 for FeSiCrB SMCs. Furthermore, Co2Z/FeSiCrB SMCs present the smaller core loss and more stable DC bias characteristics owing to the insulating Co2Z hexaferrites.  相似文献   
58.
In the pursuit of environmental sustainability, nanomaterials with specific characteristics that can improve the environment by various methods have been developed. In this work, M-doped TiO2 microspheres have been synthesized by a colloidal route and doped with 1% in wt. of M (M=Zn, Ga and Ge). The materials were calcined at 400 °C and they were characterized by means X-ray diffraction (XRD) analysis, UV–vis spectroscopy coupled with diffuse reflectance spectroscopy (DRS), N2 physisorption, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The catalytic activity of the materials was studied by evaluating the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in an aqueous solution. Moreover the photocatalytic activity of the doped materials were enhanced compared to pristine material, according the next trend:Ge:TiO2 >Ga:TiO2 >Zn:TiO2>TiO2. The presence of atoms of Zn, Ga or Ge in the structure of TiO2 was shown by XPS analysis, indeed these results reveal a diminution of the energy levels of the 2p3/2 and 2p1/2 electrons from doped materials compared with pristine material, which is evidence for a strong relationship between the doped cation valence of the TiO2 and the degradation of the 2,4-dichlorophenoxyacetic acid. Theoretical calculations within DFT framework were performed on two models of nanoparticles like-anatase in order to interpret the photocatalytic activity obtained experimentally by means the frontier orbitals (HOMO and LUMO), the morphology and electronic distribution.  相似文献   
59.
Considerable swelling stress associated with hydrogen absorption process caused by metal hydride expansion is extensively observed in a metal hydride tank which is usually designed for hydrogen storage application. Such swelling stress being applied to tank wall may cause potential safety issue such as tank failure. In the present investigation, silicone oil is selected as an additive incorporating into MlNi4.5Cr0.45Mn0.05 alloy in an attempt to alleviate the swelling stress. The results obtained by a self-built direct swelling stress testing apparatus show that the addition of silicone oil can significantly reduce alloy particle swelling stress. The addition of 3 wt% silicone oil is appropriate to acquire efficient swelling stress alleviation. During cycling the maximum swelling stress increases with charging pressure. The formation of silicone oil thin film on the surface of alloy particles, acting as a “cushion” among alloy particles, would reduce particle agglomeration and enhance particle movement during hydrogen absorption and desorption cycling. This is the reason for the observed swelling stress alleviation by silicone oil.  相似文献   
60.
The influence of metallic Ni or NiAl2O4 as a reinforcing particle on grain growth and wear resistance in alumina matrix composites was evaluated. Alumina composites with various Ni or NiAl2O4 concentrations were prepared by multiple-infiltrations of Ni-nitrate into bisque-fired (necked) alumina green bodies followed by heat treatment and sintering at 1600 °C for 2 h. Sintering in a reducing environment resulted in composites with metallic Ni nanoparticles, while NiAl2O4 alumina composites were formed when sintering in air. The addition of Ni or NiAl2O4 resulted in a reduction in alumina grain size after sintering. The material response to abrasive wear was estimated by measuring the time to section samples of a defined area using a diamond wafering saw and was compared to the wear resistance of undoped alumina. In both cases, reinforcing alumina with Ni or NiAl2O4 particles resulted in a significant increase in wear resistance, correlated to the reduced grain size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号