首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
  国内免费   5篇
电工技术   1篇
综合类   1篇
化学工业   9篇
金属工艺   4篇
机械仪表   2篇
矿业工程   1篇
能源动力   6篇
无线电   1篇
一般工业技术   6篇
自动化技术   3篇
  2024年   1篇
  2023年   6篇
  2021年   2篇
  2020年   3篇
  2019年   6篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   4篇
  2004年   2篇
  2001年   1篇
  1996年   1篇
  1988年   1篇
排序方式: 共有34条查询结果,搜索用时 80 毫秒
31.
Developing efficient and cheap electrocatalysts as substitutes for commercial Pt/C in the oxygen reduction reaction(ORR)is extremely necessary. Herein, paper mill sludge (PMS) was utilized to produce iron, nitrogen and sulfur co-doped carbon nanotube/nanoporous carbon nanocomposite (PMS-CNT/C) by pyrolysis. PMS-CNT/C-b, one of as-prepared PMS-CNT/C exhibited excellent oxygen reduction reaction activity with an onset potential of 0.99 V vs. RHE and half-wave potential of 0.77 V vs. RHE, which was similar to the commercial Pt/C catalyst (onset potential of 0.99 V vs. RHE and half-wave potential of 0.76 V vs. RHE). It had longer-term stability and higher methanol tolerance in alkaline medium than Pt/C. Moreover, the new catalyst also exhibited excellent catalytic performance in neutral solution. The energy output of microbial fuel cells loaded with PMS-CNT/C-b catalyst was also higher than that of commercial Pt/C under neutral condition. The excellent ORR performance of PMS-CNT/C-b was due to the carbon nanotube/nanoporous structure and the synergistic effect of abundant N groups, iron nitrides and thiophene-S. The formation of CNTs in the carbon nanotube/nanoporous carbon nanocomposite was mainly attributed to melamine, which was added into PMS and was at first just considered as a nitrogen source to develop N-doped PMS-based catalysis in this work. The synthesis of paper mill sludge-based carbon nanotube/nanoporous nanocomposite and its excellent ORR activity will make the new catalyst a promising cathodic electrocatalyst alternative for fuel cells.  相似文献   
32.
《Ceramics International》2023,49(10):15133-15144
Embedding nuclear waste in glass-ceramic and immobilizing nuclides in ceramic lattice is an effective way for the disposal of high-level radioactive waste. In this paper, a method of solidification of simulated various nuclides was proposed, i.e., RE3+(RE = La, Sm, Nd, Dy), Sr2+ and Ba2+ precipitated from waste molten salt in the form of REPO4, SrCO3 and BaCO3 were solidified in glass-ceramics. To avoid the decomposition of SrCO3 and BaCO3 at high temperature, SrCO3/BaCO3 containing Cl salt was further sintered with NH4H2PO4 to form Sr5(PO4)3Cl/Ba5(PO4)3Cl ceramics. It was found that the prepared REPO4 belonged to monoclinic or tetragonal crystal system, while Sr5(PO4)3Cl and Ba5(PO4)3Cl belonged to hexagonal crystal system. REPO4, Sr5(PO4)3Cl and Ba5(PO4)3Cl ceramics were co-solidified in iron phosphate glass. BET results showed that the ceramics had a dense structure without any pore inside. XRD, TEM and HRTEM results showed all ceramics had high crystallinity, and nuclides could enter the lattice structure of ceramics through isomorphic replacement, which made the nuclides stable in the crystal structure. The effects of embedding rate on the volume density, Vickers hardness and wettability of glass-ceramics were explored. It was found that the density of the glass-ceramics gradually increased with the increase of ceramic embedding rate, however, the Vickers hardness firstly increased and then decreased. When the embedding rate reached 20 wt%, the Vickers hardness of the glass-ceramics could reach 583.90 GPa. The water contact angles of glass-ceramics with an embedding rate 0–40 wt% were measured to be 70.45°–84.05°, indicating glass-ceramics having a good water leaching resistance. Furthermore, the normalized leaching rate NRi of La3+, Sm3+, Nd3+, Dy3+, Sr2+, Ba2+, Cl on the 28th day were estimated to be 7.53 × 10−7, 5.02 × 10−7, 5.12 × 10−7, 4.04 × 10−7, 1.22 × 10−3, 1.59 × 10−4, 1.07 × 10−4 g‧m−2‧d−1, which indicating that all elements remained good leaching resistance.  相似文献   
33.
34.
《Ceramics International》2023,49(2):1811-1819
To improve the service life of periclase-forsterite refractories, it is important to develop aggregates with high thermal shock resistance. In this study, periclase-forsterite aggregates with good resistance to thermal shock and micro-nanopores were prepared using high-silicon magnesite, silica, and silica sol. Microcracks were generated in the multiphase aggregates, which inhibited the continuous propagation of cracks during thermal shock through mismatched thermal expansion coefficients. Based on Hasselman's thermal shock stability factor, the reduction in the average thermal expansion coefficient and improved mechanical characteristics were critical factors in improving the thermal shock resistance of the multiphase aggregates. As a binder, silica sol provided nano-SiO2 and superplasticity, which facilitated the formation of micro-nanopores and strengthened the combination of the various phases in the aggregates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号