首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   24篇
  国内免费   6篇
综合类   7篇
化学工业   109篇
金属工艺   82篇
机械仪表   2篇
建筑科学   2篇
能源动力   23篇
水利工程   1篇
武器工业   1篇
无线电   4篇
一般工业技术   95篇
冶金工业   8篇
原子能技术   2篇
自动化技术   3篇
  2023年   10篇
  2022年   28篇
  2021年   10篇
  2020年   24篇
  2019年   17篇
  2018年   15篇
  2017年   19篇
  2016年   9篇
  2015年   14篇
  2014年   28篇
  2013年   23篇
  2012年   21篇
  2011年   21篇
  2010年   16篇
  2009年   24篇
  2008年   4篇
  2007年   8篇
  2006年   11篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1992年   1篇
排序方式: 共有339条查询结果,搜索用时 791 毫秒
61.
目的 研究TiB2.TiAl3/2024Al复合材料多向锻造金属流动行为,以及锻造温度、锻造道次对复合材料再结晶行为及基体晶粒尺寸的影响。方法 将TiB2.TiAl3/2024Al复合材料的本构模型及再结晶动力学模型导入Deform-3D有限元模拟软件中,建立复合材料多向锻造的数值仿真模型。通过数值仿真方法分析锻造温度和锻造道次对复合材料多向锻造组织的影响规律。结果 多向锻造变形过程中,剧烈塑性变形和动态再结晶主要分布在材料试样内部的呈“X”形状的区域,单次下压最大等效应变为1.42。锻造1道次时,锻造温度从350 ℃升至500 ℃,再结晶体积分数从65.0%升至69.7%,平均晶粒尺寸由350 ℃的24.6 μm降至500 ℃的21.5 μm。在450 ℃锻造温度下,1道次锻造后,再结晶体积分数为69.2%,平均晶粒尺寸由铸态的45.0 μm减小到21.9 μm;2道次锻造后再结晶体积分数为89.5%,平均晶粒尺寸为16.3 μm;3道次锻造后坯料的再结晶体积分数为96.1%,平均晶粒尺寸为14.3 μm。与试验结果比较可知,模拟结果准确可靠。结论 提高锻造温度和增大锻造道次可以促进试样发生动态再结晶,从而达到细化晶粒的目的。  相似文献   
62.
In order to reduce intermetallic compound formations in brazed joints, a CoFeCrNiCu high entropy alloy was invented and employed to braze SiC ceramics. Results show that SiC ceramics were tightly and strongly brazed with the CoFeCrNiCu filler. Microstructure, phase and shear strength were systematically studied for joints brazed at different temperature. Main compositions were identified as high-entropy FCC, Cu(s, s), Si(s, s), and Cr23C6 phases, regardless the brazing temperature differences. After being brazed at 1453 K, the joint reached a maximum shear strength of 60 MPa, much higher than those brazed with conventional AgCuTi filler. Thanks to high entropy effect of CoFeCrNiCu filler, random solid solution turned out in the seam and benefitted joint quality. The successful use of CoFeCrNiCu high entropy alloy as fillers can expand the application range of high entropy alloys and provide a new filler system to braze ceramics.  相似文献   
63.
64.
A carbothermal reduction reaction (CRR) approach was developed in this research to tailor the surface phase structure of the SiO2f/SiO2 composites with high chemical reactivity to replace the original inert surface. Results show that SiC can form after CRR treatments. For AgCuTi-SiO2f/SiO2 wetting interfaces, TiC and residual pyrolytic carbon layer can be found inside the reaction layer, which was the key, promoting the wettability of the AgCuTi-SiO2f/SiO2 system. The contact angle of the AgCuTi-SiO2f/SiO2 system dropped from 127° to 43° after the CRR treatments. The reliability of the bonded AgCuTi-SiO2f/SiO2 interface was also characterized by putting 3 different systems into comparison, i.e., the original AgCuTi-SiO2f/SiO2 system, the AgCuTi-SiO2f/SiO2 system with CRR treatments (SiC formation) and the AgCuTi-SiO2f/SiO2 system coated with powdered carbon (no SiC formation). The shear strength of the SiO2f/SiO2-AgCuTi-SiO2f/SiO2 system with CRR treatments was the highest, which was 3 times that of the other 2 brazing systems.  相似文献   
65.
Micromechanics modeling was performed to study the effects of thermal residual stress, weak interphases, TiB2 volume fraction and particle size on the mechanical responses and fracture behaviors of B4C-TiB2 composites. Experimentally observed fracture behaviors including micro-cracking and crack deflection were successfully captured. The weak interphases at B4C-TiB2 boundaries and the thermal residual stress induced during cooling by the large CTE mismatch between B4C and TiB2 were identified as two major factors to promote micro-cracking that caused the enhanced progressive failure behavior. Micro-cracking was enhanced with higher TiB2 volume fraction due to higher fraction of weak interphase and material affected by thermal residual stress. Meanwhile, micro-cracking behaviors exhibited limited change with varying TiB2 particle sizes. This modeling study successfully captured the main fracture behaviors and their trends by varying micro-structures of B4C-TiB2 composites and can potentially aid microstructure design of tougher B4C-TiB2 composites in the future.  相似文献   
66.
Although the near-net-shape forming ability of gelcasting has been well demonstrated, current attention mainly was focused on manufacturing compact ceramics. In this work we demonstrated that the combination of the gelcasting technique and the ceramic sintering process could prepare the near-net-shape through-pore hydroxyapatite (HAP) ceramics, in which the pore diameter at the range of < 2 μm could be adjusted by changing the content of HAP in green bodies and with the aid of alcohol immersion. Experiments demonstrated that the gels in green bodies and alcohol immersion played important roles in improving the strength of green bodies and decreasing the shrinkage and deformation of green bodies, and thus improving the through-pore and near-net-shape forming of HAP ceramics. Such method reported here possibly extends the gelcasting technique to manufacture other through-pore ceramics for precise filtration, protein separation, or high performance liquid chromatography.  相似文献   
67.
The rolling direction (RD) and the transverse direction (TD) samples were obtained from an as-rolled ZK60 magnesium alloy sheet with strong anisotropy of initial texture and their mechanical properties were tested at various deformation temperatures. Meanwhile, the microstructure and texture of these samples after fracture were investigated. Results revealed that a higher flow stress along the RD than that along the TD at room temperature were ascribed to the strong anisotropy of transitional texture, and this texture effect was remarkably weakened with the increase of deformation temperature. Deformation structure was dominant at 100 °C, and was replaced by dynamic recrystallization structure when the deformation temperature increased to 200 °C and 300 °C. The texture presented a strong texture (transitional texture in the RD sample and basal texture in the TD sample) at 100 °C, but its intensity visibly decreased and texture components became more disperse at 200 °C and 300 °C. These microstructure and texture results were employed in conjunction with calculated results to argue that raising deformation temperature could increase the activity of non-basal slip by tailoring the relative critical resolved shear stress of each deformation mode and finally result in low texture effect on mechanical anisotropy.  相似文献   
68.
《Ceramics International》2017,43(7):5628-5634
Silicon carbide nano-fibers (SiCNFs) were in-situ grown on the surface of carbon fibers by catalysis chemical vapor deposition (CCVD) with Ni nano-particles as catalyst at 1000 °C. The phase composition, microstructures, oxidation resistance and microwave absorption properties of the SiCNFs coated carbon fibers were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermal gravity analysis (TGA) and Vector network analyzer, respectively. The results show that the as-grown nano-fibers which are mainly composed of β-SiC, present a withe-like morphology with diameter of 20–50 nm and aspect ratio of 100–150. Additionally, the TGA curves indicate that the oxidation resistance of the SiCNFs coated carbon fibers is significantly improved in comparison to the pure carbon fibers. Moreover, the investigation reveals that the microwave absorption properties of the SiCNFs coated carbon fibers are effectively enhanced. The reflectivity of the SiCNFs coated carbon fibers is less than −10 dB within the frequency ranging from 9.2 to 11.7 GHz and the lowest value of reflectivity can approach −19.9 dB when the thickness of specimen is 2 mm. While the reflection loss of the pure carbon fibers is higher than −2.1 dB within the whole band ranging from 2 and 18 GHz. The superior microwave absorbing performance of the SiCNFs coated carbon fibers is mainly attributed to the improved impedance matching as well as dissipation resulted from hopping migration. In conclusion, this study provides an effective modification approach to improve the microwave absorption properties of carbon fibers. Finally, the SiCNFs coated carbon fibers could be considered as a promising candidate in light-weight microwave absorbing materials.  相似文献   
69.
《Ceramics International》2017,43(15):11668-11675
Ag-Cu-Ti/Cu/Ag-Cu multi-layered filler was successfully designed to braze porous Si3N4 and Invar alloy. To further reduce the CTE mismatch between the porous Si3N4 and brazing filler, Mo particles were introduced into Ag-Cu-Ti. The effects of the Mo addition on the microstructure and mechanical properties of the brazed joints were studied. The results showed that, the addition of Mo particles into Ag-Cu-Ti lowered the CTE mismatch and improved the joint strength to a certain degree. However, an excessive content was harmful. The Mo particles could absorb Ti at high temperature, causing Ti shortage in the reaction with the ceramic. When cooling down, the absorbed Ti was released. The released Ti could react with Cu to generate Cu-Ti phase. So, additional Ti was adopted in the brazing filler as a supplement. When the Ti content was 5 wt%, the reaction layer on the ceramic interface was too thin to transfer enough load. However, when it reached 15 wt%, the Cu interlayer dissolved completely and Fe-Ti and Ni-Ti phases appeared. The maximum joint shear strength (83 MPa) was obtained with 10 wt% Ti and 5 vol% Mo, which had exceeded 90% of the porous Si3N4 and was 56% higher than the joint brazed without Mo particles.  相似文献   
70.
We present a physics-based semi-analytical model of bulk heterojunction (BHJ) organic solar cell (OSC) for predicting the electrical characteristics of the device, taking into account the space dependency of generation rate profiles. The model enables us to derive the J-V characteristics of BHJ OSC without the need of a closed form expression of arbitrary carrier generation rate (which may not exist), hence avoiding the cumbersome numerical fitting method employed in literature previously. Using the proposed model, we perform an extensive analysis to study the effect of spatial distribution of generation rate profiles on the device performance. For this purpose, we use Gaussian shaped profiles that have a common average value thus retaining the total number of generated carriers same. We vary the position of the generation peak and its sharpness (width of the Gaussian peak) as well as number of peaks to analyze their effects on device efficiency. For the considered profiles, results show that the optimized profile has a peak carrier generation rate exactly halfway through the active layer and falls off sharply on either side. In the end, we propose methods of controlling the generation profiles by modifying the device structure and perform optical simulation to show the corresponding generation profiles. Thus, we show the usefulness of our derived model in finding the spatial distribution of a given number of carriers along the active layer that yields the best device performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号