首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   66篇
  国内免费   13篇
电工技术   1篇
综合类   13篇
化学工业   147篇
金属工艺   96篇
机械仪表   6篇
矿业工程   17篇
能源动力   61篇
轻工业   2篇
无线电   17篇
一般工业技术   73篇
冶金工业   170篇
原子能技术   1篇
自动化技术   45篇
  2023年   64篇
  2022年   36篇
  2021年   41篇
  2020年   70篇
  2019年   42篇
  2018年   21篇
  2017年   31篇
  2016年   23篇
  2015年   23篇
  2014年   36篇
  2013年   27篇
  2012年   39篇
  2011年   24篇
  2010年   19篇
  2009年   23篇
  2008年   10篇
  2007年   22篇
  2006年   29篇
  2005年   12篇
  2004年   7篇
  2003年   5篇
  2002年   7篇
  2001年   9篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1995年   4篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1976年   1篇
排序方式: 共有649条查询结果,搜索用时 281 毫秒
11.
The porous polyimide/hollow mesoporous silica nanoparticles (PI/HMSNs) composite films were fabricated via blending polymerization by using polystyrene (PS) microspheres as the pore-forming template. The morphologies, microstructures, thermal stability, thermal expansion coefficient (TEC), and mechanical performances of the porous PI/HMSNs films were characterized in detail. Results showed that the uniform dispersion of HMSNs benefits from the strong hydrogen-bonding interaction between the hydroxyl groups of HMSNs and poly(amic acid) chains. Both weight loss and TEC of the porous PI/HMSNs films are lower than those of the pure porous PI film. When 0.8 wt % HMSNs and 7.0 wt % PS were added into the PI matrix, the Young's modulus and tensile strength of composite film increased by about 32.4% and 68.1% compared with those of the pure porous PI film. Conclusively, the introduction of HMSNs in the porous PI matrix is an important strategy to enrich the diversity of porous structure, improve the thermal and mechanical properties of the porous PI material simultaneously. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48792.  相似文献   
12.
13.
Novel free-standing stiff all carbon films based on multi-walled carbon nanotube (MWNT)/glassy carbon (GC) with excellent performance were fabricated. MWNTs, as excellent reinforcing materials, were successfully dispersed in polyimide (PI) matrix by in situ polymerization. The resultant MWNT/PI nanocomoposite films were used as precursors and underwent carbonization process. As a result, all carbon constituted MWNT/GC composite films were obtained. Mechanical results showed the maximum 3-point bending strength and modulus reached 575.5 MPa and 7.7 GPa respectively, improved by 54% and 78% compared to those of neat GC films. This method is simple, and the free-standing composite films can be prepared in large scales, which hold great potential in many applications.  相似文献   
14.
The feasibility to recover the gold present in alluvial material, by means of a chlorination process, using chlorine as a reactive agent, has been studied. The influence of temperature and reaction time was studied through changes in the reactant solid. The techniques used to characterize the mineral samples and the reaction residues were stereomicroscopy, X-ray diffraction, X-ray fluorescence and scanning electronic microscopy. Results indicate that gold extraction is favored by increasing, both, the temperature and the reaction time. The best recovery values were of 98.23% at 873 K and 3600 s and of 98.73% at 873 K and 5400 s, with very low attack of the matrix containing the metal. The powder of pure gold was not chlorinated at this temperature level.  相似文献   
15.
Glasses of the SiO2–Al2O3–BaO–MgO and SiO2–Al2O3–ZrO2–CaO–Na2O systems were synthesized in the perspective to apply them as sealants in SOFC at operating temperatures of 700–900 °C. Thermal properties of the chosen glass compositions and their compatibility with the SOFC materials (YSZ-electrolyte and alloy-interconnector Crofer22APU, 15×25T) were investigated by means of synchronic thermal analysis and high-temperature dilatometry. The elemental analysis was performed by atomic emission spectroscopy. The average values of the temperature coefficients of the linear extension are 10.0×10−6 °C−1 for glass 45%SiO2– 15%Al2O3–25%BaO–15%MgO and 9.5×10−6 °C−1 for glass 60%SiO2–10%Al2O3–10%ZrO2–5%CaO–15%Na2O. The gluing microstructure in YSZ/glass/Crofer22APU was studied by scanning electron microscopy. The crystallization process of silicate phases was revealed to occur in the SiO2–Al2O3–BaO–MgO glass. The analysis of the crystallization products was performed by Raman spectroscopy and X-ray diffraction. Glassy ceramics was proved to possess better parameters in comparison with amorphous glass to be used as a sealant in electrochemical sensors and oxygen sensors. The SiO2–Al2O3–ZrO2–CaO–Na2O low-temperature amorphous glass can be applied in SOFC.  相似文献   
16.
《Ceramics International》2016,42(7):8425-8430
Nd3+ doped ZnV2O6 and Zn2V2O7 samples were synthetized by using melt-quenching method. X-ray diffraction patterns indicate that both samples are polycrystalline. The crystallinity was also verified by Raman scattering, from which the different vibrational modes of ZnV2O6 and Zn2V2O7 were detected. Electron dispersive spectroscopy (EDS) analysis shows that the Nd3+ incorporation into the ZnV2O6 and Zn2V2O7 hosts is around 0.9±0.1 and 0.2±0.1 at%, respectively. The micrographs obtained by Scanning Electron Microscopy, reveal that the Nd3+ doped ZnV2O6 sample is predominantly composed by micro-rods, whereas the Nd3+ doped Zn2V2O7 one is only composed by irregular blocks. The band gap energies (Eg) were calculated from the diffuse reflectance spectra by the Kubelka–Munk equation; Eg values resulted to be 2.24 and 2.86 eV for the Nd3+ doped ZnV2O6 and Zn2V2O7 samples, respectively. By means of two points dark conductivity measurements, conductivity values in the 10−4–10−6 and 10−6–10−8 cm)−1range for the Nd3+ doped ZnV2O6 and Zn2V2O7 samples were measured, respectively. The conductivity as a function of the temperature indicated a semiconductor behavior. The photoluminescence spectra upon Ar+ laser excitation at 488 nm, exhibited the Nd3+ characteristics emissions. For instance, the Nd3+ doped ZnV2O6 sample displayed the Nd3+ 4F5/24I9/2 and 4F3/24I9/2 emissions; while the Nd3+ doped Zn2V2O7 one showed the Nd3+ characteristic emissions associated with the 4G7/2, 4F9/2, 4F5/2 and 4F3/24I9/2 transitions. The lifetimes were 80 and 130 µs for the Nd3+ doped ZnV2O6 and Zn2V2O7 samples, respectively. All these results suggest a successful synthesis of Nd3+ doped zinc vanadate compounds by the melt-quenching technique.  相似文献   
17.
《Ceramics International》2016,42(4):4642-4647
Tunable up-conversion luminescent material KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) has been synthesized by a typical hydrothermal process. Under 980 nm laser diode (LD) excitation, the emission intensity and the corresponding luminescence colors of KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) have been investigated in detail. The energy transfer from the Yb3+ sensitizer to Ho3+, Er3+ and Tm3+ activators plays an important role in the development of color-tunable single- phased phosphors. The emission intensity keep balance through control of the Ho3+ co-doping concentrations, white light was experimentally shown at KY(MoO4)2: 20 mol% Yb3+, 0.8 mol% Er3+, 0.5 mol% Tm3+, 1.0 mol% Ho3+ phosphor with further calcination at 800 °C for 4 h under 980 nm laser excitation. The color tunability, high quality of white light and high intensity of the emitted signal make these up-conversion (UC) phosphors excellent candidates for applications in solid-state lighting.  相似文献   
18.
基于人工神经网络预测Ni-W合金镀层的硬度和耐腐蚀性能   总被引:1,自引:1,他引:0  
周琼宇  谢蔚  王小芬  王操  胡义锋 《表面技术》2016,45(12):140-146
目的预测Ni-W合金镀层的硬度和耐腐蚀性能,优化Ni-W合金镀层的电沉积工艺。方法在柠檬酸-硫酸盐溶液体系中直接沉积制备Ni-W合金镀层,并将实验所得镀层数据作为学习样品,利用BP神经网络对建立了Ni-W合金电沉积过程参数对镀层硬度和腐蚀电流密度之间的映射关系。结果低碳钢表面所沉积的Ni-W合金镀层表面均匀致密,与基体结合良好,能够有效地对基体起到保护作用。第二隐层的加入使得3-7-15-2四层网络达到网络收敛的训练次数(1 215 365次)远小于3-7-2三层网络的训练次数(239 950 000次)。四层网络预测所得镀层的硬度和腐蚀电流密度与实验值十分相近,其相对误差≤5.03%。结论 BP神经网络能够准确建立电沉积Ni-W合金镀层的工艺条件和目标性能之间的映射关系,在本文所用的沉积体系和参数范围内,Ni-W合金镀层的显微硬度在296~982HV之间,其硬度最大时所对应的电沉积工艺条件为:p H=7.2,电流密度8 A/dm2,WO42+浓度为0.46 mol/L。Ni-W合金镀层的腐蚀电流密度在7.3~100μA/cm2范围内。镀层耐蚀性能最好时,即镀层腐蚀电流密度最小时的电沉积工艺条件为:p H=6.4,电流密度0.36 A/dm2,WO42+浓度为0.34 mol/L。  相似文献   
19.
Iron can not be recovered at high value because only rare earth elements are effectively recovered from NdFeB waste via oxidation roasting-hydrochloric acid leaching process.In this study,a new method for leaching NdFeB waste with oxalic acid was developed.The high-efficiency,simultaneous and high-value recovery of rare earth elements and iron was realized to simplify the process and improve the economic benefit.Results of the oxalic acid leaching experiments show that under the optimum leaching conditions at 90℃ for 6 h in the aqueous solution of oxalic acid(2 mol/L) with a liquid-solid ratio of60 mL/g,the iron leaching efficiency and precipitation rate of rare earth oxalate reach 93.89% and 93.17%,respectively.Rare earth oxalate and Fe(C2O4)33- were left in the residue and the leaching solution,respectively.The leaching mechanism was further analyzed by characterising the leach residues obtained through X-ray powder diffraction(XRD) and scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDS).Results of the leaching kinetics study indicate that the process of oxalic acid leaching follows the shrinking nucleus model,and the leaching kinetics model is controlled by the mixed factors of diffusion and chemical reaction.The leaching residue was calcined at 850℃ for 3 h and then decomposed into rare earth oxide,which can be directly used to prepare rare earth alloy via molten salt electrolysis.For the leaching solution,ferric oxalate solution was reduced using Fe powder to prepare the ferrous oxalate(FeC2O4-2H2O).  相似文献   
20.
Herein, the improvement of the microwave dielectric properties and sintering characteristics of Zn1?xBixVxW1?xO4(x = 0–0.15)-based ceramics is reported. The results showed that an appropriate amount of doping could not only reduce the optimum sintering temperature from 1100° to 900°C, but also enhance the densification of the microstructures and increase the Q×f value from 5351 to 42525 GHz. Additionally, various structural parameters including the phase composition, crystal structure, vibrational and chemical bond characteristics that are correlated with the dielectric properties were systematically investigated. By considering the chemical bond characteristics, the first-principles calculations and the acquired Raman spectra, the interaction between W-O is stronger than Zn-O in the ZnWO4 structure, while the interaction between V-O is stronger than Bi-O in BiVO4. Interestingly, when the Zn0.97Bi0.03V0.03W0.97O4-based ceramics were sintered at 900 °C, improved microwave dielectric properties were acquired (εr =18.32, Q×f=42525 GHz, τf=?67.51 ppm/°C), which provides a promising candidate in low-temperature co-fired ceramics technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号