首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   3篇
化学工业   2篇
金属工艺   11篇
机械仪表   2篇
建筑科学   1篇
一般工业技术   3篇
冶金工业   1篇
  2023年   3篇
  2021年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2014年   1篇
  2012年   1篇
  2009年   5篇
  1992年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
The use of magnetorheological fluids for finishing is one of the most promising smart processes for the fabrication of ultra-fine surfaces, particularly three-dimensional millimeter or micrometer structures. This process is not readily applicable to hard-surface materials, like an Al2O3–TiC hard disk slider, if a conventional rotating tool is used. This is due to the rotational speed and the resulting actual impressed abrasion energy limits, and the consequent low efficiency of the material removal rate. In this study, the main mechanism responsible for the decrease of the material removal rate on hard materials for a wheel-type magnetorheological finishing process is examined, both theoretically and experimentally, and a solution to this problem is devised via two approaches. The first uses a rectilinear alternating motion to improve processing conditions, and the second focuses on the use of more effective abrasives, namely magnetizable abrasives made of iron powders sintered with carbon nanotubes, which are new abrasives that have not yet been introduced in the field of surface finishing. Furthermore, it is shown that these abrasives increase the lifetime of consumables (magnetorheological fluid and abrasives) and the material removal rate.  相似文献   
12.
针对垂直磨削法中砂轮误差对超精密磨削非球面加工质量的影响,通过对多种砂轮误差的逐一理论分析,阐述了各种砂轮误差对非球面磨削加工质量的影响状况,并对部分砂轮误差进行校正和补偿,以提高磨削加工质量。最后,通过非球面磨削加工实验验证了砂轮误差补偿的正确性。该研究为非球面超精密磨削加工中砂轮误差的补偿提供技术参考。   相似文献   
13.
This paper aims to improve bond surface smoothness, sharpening quality and efficiency as well as control grain protrusion height. Systematic research was performed on pulsed fiber laser sharpening of a coarse-grained bronze-bonded diamond grinding wheel. The results show that bond surface smoothness is related to the laser spot overlap ratio Uc and the laser scan track overlap ratio Ul. In the range 10–70%, an increase in Uc and Ul improved the sharpened bond surface smoothness. Sharpening quality and efficiency are both related to laser power density Ip. In the range 2.115–6.344 × 107 W cm−2, an increase in Ip gradually improved sharpening efficiency, but the sharpening quality trend initially improved followed by a subsequent decline. The grain protrusion height is related to the laser scan cycles N. An excessively small N will result in an insufficient chip space such that the grinding wheel is likely blocked. Grains will likely fall off due to an insufficient holding force if N is excessively large. Compared with silicon carbide grinding wheel sharpening, a pulsed laser-sharpened grinding wheel exhibits less surface grain fall-off, better grain height uniformity, more chip space around the grain and superior grinding wheel surface topography.  相似文献   
14.
For vitrified bond cubic boron nitride (CBN) grinding wheel, introduced pores play a very important role for its mechanical properties and performance. In this paper, granulated sugar was used as pore former of the vitrified bond in CBN grinding wheel. The effects of content and particle size of the granulated sugar on the porosity and the flexural strength of the sintered vitrified bond CBN wheel samples have been investigated. It was found that the porosity of the vitrified bond CBN wheel is positively correlated with the content of the granulated sugar. The smaller and more irregular shaped pores are uniformly distributed in the bond when the content of granulated sugar is between 1 and 3 wt.%. Larger and more non-uniform pores and pore channels appear as the content of granulated sugar is increased from 5 to 7 wt.%. The flexural strength of the vitrified bond CBN wheel specimens decreases with an increase in pore former’s content and the porosity. With the increase of pore former’s particle size at the content of 3 wt.%, the flexural strength reaches to a peak value of 49 MPa with average particle size of granulated sugar is 250 μm. When the average size of granulated sugar is from 100 to 125 μm, the pores’ size is similar with the size of pore former and distributed homogeneously. The larger granulated sugar with the size from 160 to 500 μm can introduce different size of pores which could be smaller or larger than the size of pore former.  相似文献   
15.
Abrasive waterjet (AWJ) turning is a technology that still tries to find its niche field of application where it can be economically viable. The paper reports on a particular application of AWJ turning that proved its technological and economical capability, i.e. profiling and dressing of grinding wheels. Starting from the theoretical considerations, the key operating parameters of AWJ turning are identified and included in a methodology to generate various profiles of grinding wheels by means of tangential movement of the jet plume. Roughing in single pass to concave/convex geometries (experimented depth of cuts <30 mm), generation of thin walls/slots (thickness <2 mm, depth >30 mm) and intricate profiles (e.g. succession of tight radii) on a variety of grinding wheels show the capability of AWJ turning to fulfil the requirements of this niche application. With or without employing abrasive grits, a summary of the parameters of AWJ turning is presented along with an assessment of geometrical accuracy of profiled grinding wheels; additionally, evaluations of operational times to support the efficiency of the methods are presented. Finally, the paper discusses the limitations of the method and other possible applications of the AWJ in profiling of grinding wheels to help the definition of the “new applicative portfolio” of this technology.  相似文献   
16.
A new method is presented for the fast preparation of functionally graded cemented carbide materials by microwave heating nitriding sintering. The influence of composition and sintering temperature on the mechanical properties, microstructure, and phase composition of the materials was studied. Results showed that functionally graded cemented carbides with the desired mechanical properties can be obtained rapidly by microwave heating nitriding sintering. A gradient layer with a Ti(C, N)-enriched surface layer, and underneath a Co-enriched layer formed on the top of the hard alloy substrate. The nitriding process had little effect on the microstructure of the matrix. A lower surface roughness, and the similar layer thickness as seen in conventional heating nitriding was obtained by microwave heating nitriding sintering in a short period of time. The thickness of the gradient layer increased with increasing temperature. The high Ti content in the raw material was beneficial to the formation of the gradient layer; however, the Co content had little effect on the gradient layer thickness when it increased from 6% to 10%.  相似文献   
17.
Preparation of superabrasive grinding wheel becomes one of the most important subjects on precise machining field at present. In this research, mist-jetting electrical discharge dressing (MEDD) technology was applied to dress metal-bonded superabrasive wheels. The author proposed a systematical study on the mechanism of selective removal of the bond of wheel. An experimental study has been carried out on a Die-Sinking Electrical Discharge Machine. The quality of wheels under different dressing electrical parameters was analyzed in terms of wheel profiles and wheel topographies. In addition, the performance of MEDD’ed wheel was evaluated by measuring grinding forces. Experimental results indicate favorable dressing quality can be obtained under suitable processing parameters, and MEDD is feasible for metal-bonded superabrasive grinding wheel.  相似文献   
18.
Sinter-HIP combining vacuum and pressure in one-step sintering process has been applied to prepare ultrafine crystalline cemented carbide with a surface gradient layer enriched in binder. The effect of powder particle size on gradient formation and grain growth has been examined. The results show that the gradient layer thickness increases with decreasing WC and Ti(C,N) powder particle size. The number of abnormal WC grains increases with decreasing WC powder particle size. The formational mechanism of the gradient cemented carbide with ultrafine grains is discussed through analyzing the decomposability of nanoscale Ti(C,N), atomic diffusion and grain growth during one-step Sinter-HIP process.  相似文献   
19.
《Ceramics International》2023,49(6):8952-8961
Microwave-induced electric discharge machining (MV-EDM) is an emerging machining method that can be applied to fine machining of metal materials. A feasibility analysis of the application of MV-EDM to sharpen diamond grinding tools was conducted in this study. A multiphysical simulation model for sharpening using MV-EDM was established, and MV-EDM sharpening experiments and measurements were performed to verify the accuracy of the simulation model. It was found that MV-EDM can effectively improve the protrusion height hp and does not result in severe graphitization of diamond grains under appropriate conditions. Under the conditions of a microwave power of 1 kW and a gap scale d of 0.1 mm, the hp of the diamond grain increased to 91 μm with a complete diamond crystal shape and slight graphitization. In addition, it was discovered that the gap scale d and initial protrusion height h0 had a significant effect on the protrusion height hp and the graphitization of the diamond grains. After verification, the accuracy of the simulation model for calculating the protrusion height of diamond grains was controlled within a range of ±15 μm. The results of this study provide a theoretical basis for the industrial application of MV-EDM to sharpening.  相似文献   
20.
《Ceramics International》2023,49(5):7649-7661
In order to solve the problems of workpiece damage and grinding wheel clogging when grinding difficult-to-cut materials such as alumina ceramics, organisms with regular hexagonal structures distributed on the body surface and with strong hydrophilicity and high anti-wear functions were used as biomimetic objects for the first time, and the preparation process optimization, structure size design and grinding performance evaluation of hydrophilic structured bronze-bonded diamond grinding wheels were explored in this paper. The influence of the preparation process parameters on the micro-topography and the dimensional accuracy of the structure on the surface of the grinding wheel was revealed, and a new laser structuring process based on the coordinated control of focus position and scanning times was proposed, which could efficiently prepare regular hexagonal structures with a small wall inclination angle and a depth of several millimeters on the surface of the grinding wheel. It was the first to clarify the influence of sub-millimeter-scale structure size on the contact angle of grinding fluid droplet on the surface of the grinding wheel and the surface hydrophilicity of the grinding wheel. Compared with that of the non-structured grinding wheel, the hydrophilicity of the structured grinding wheel was significantly improved, and its surface hydrophilicity increased with the increase of the structure spacing and depth, but had little correlation with the structure side length. The grinding performance of hydrophilic structured grinding wheels and non-structured grinding wheels was evaluated under extreme working conditions. Under the condition of grinding depth of 50 μm, 100 μm and 200 μm, compared with that of the non-structured grinding wheel, the peak grinding temperature of the structured grinding wheel was reduced by 18.0%, 30.4% and 15.2%, respectively, and the surface damage depth of the alumina ceramic after grinding by the structured grinding wheel was reduced by 53.7%, 46.8% and 24.3%, respectively. The hydrophilic structured grinding wheel can enhance the storage and transportation capacity of grinding fluid/chips, effectively relieve the clogging and dullness of the grinding wheel, and significantly reduce the high temperature and damage of grinding. In the next step, we will try to apply this type of grinding wheel to form grinding, in order to provide a reliable solution for suppressing form grinding damage of difficult-to-cut materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号