首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   991篇
  免费   54篇
  国内免费   21篇
电工技术   6篇
综合类   11篇
化学工业   268篇
金属工艺   48篇
机械仪表   24篇
建筑科学   14篇
矿业工程   14篇
能源动力   50篇
轻工业   143篇
水利工程   3篇
石油天然气   14篇
无线电   79篇
一般工业技术   164篇
冶金工业   22篇
原子能技术   12篇
自动化技术   194篇
  2024年   7篇
  2023年   82篇
  2022年   83篇
  2021年   98篇
  2020年   49篇
  2019年   23篇
  2018年   31篇
  2017年   48篇
  2016年   56篇
  2015年   48篇
  2014年   39篇
  2013年   37篇
  2012年   32篇
  2011年   15篇
  2010年   20篇
  2009年   15篇
  2008年   12篇
  2007年   32篇
  2006年   20篇
  2005年   12篇
  2004年   26篇
  2003年   20篇
  2002年   36篇
  2001年   28篇
  2000年   9篇
  1999年   14篇
  1998年   10篇
  1997年   5篇
  1996年   13篇
  1995年   11篇
  1994年   12篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   16篇
  1987年   33篇
  1986年   24篇
  1985年   13篇
  1984年   8篇
  1983年   1篇
排序方式: 共有1066条查询结果,搜索用时 15 毫秒
1.
Smartphones are indispensable for many young people, which in turn increases the risk of smartphone addiction. Previous studies have discovered significant and positive influences of boredom proneness, sensation seeking and smartphone addiction. This study further explored these influences, their underlying mechanisms, and the mediating effects of pastime, flow experience and self-regulation on smartphone addiction. A total of 442 Chinese college students completed a survey focusing on boredom proneness, sensation seeking, pastime, flow experience, self-regulation and smartphone addiction. The results indicated that boredom proneness positively affects smartphone addiction. Contrary to expectations, the results showed that there is no significant relationship between sensation seeking and smartphone addiction. Moreover, pastime and self-regulation have partial mediation effects on the relationship between boredom proneness and smartphone addiction, while the effect of sensation seeking on smartphone addiction is completely transmitted with the help of flow experience and self-regulation. The findings and their implications are discussed.  相似文献   
2.
It is of great urgency to design inexpensive and high-performance oxygen reduction reaction (ORR) electrocatalysts derived from biowastes as substitutes for Pt-based materials in electrochemical energy-conversion devices. Here we propose a strategy to synthesize three-dimensional (3D) porous nitrogen-doped network carbons to catalyze the ORR from two-step pyrolysis engineering of biowaste scale combined with the use of a ZnCl2 activator and a FeCl2 promotor. Electrochemical tests show that the synthesized network carbons have exhibited comparable ORR catalytic activity with a half-wave potential (~0.85 V vs. RHE) and outstanding cyclical stability in comparison to the Pt/C catalyst. Beyond that, a high electron transfer number (~3.8) and a low peroxide yield (<7.6%) can be obtained, indicating a four-electron reaction pathway. The maximum power density is ~68 mW cm?2, but continuous discharge curves (at a constant potential of ~1.30 V) for 12 h are not obviously declined in Zn-air battery tests using synthesized network carbons as the cathodic catalyst. The formation of 3D porous structures with high BET surface area can effectively expose the surface catalytic sites and promote mass transportation to boost the ORR activity. This work may open a new idea to prepare porous carbon-based catalysts for some important reactions in new energy devices.  相似文献   
3.
For the first time, we present the unique features exhibited by power 4H–SiC UMOSFET in which N and P type columns (NPC) in the drift region are incorporated to improve the breakdown voltage, the specific on-resistance, and the total lateral cell pitch. The P-type column creates a potential barrier in the drift region of the proposed structure for increasing the breakdown voltage and the N-type column reduces the specific on-resistance. Also, the JFET effects reduce and so the total lateral cell pitch will decrease. In the NPC-UMOSFET, the electric field crowding reduces due to the created potential barrier by the NPC regions and causes more uniform electric field distribution in the structure. Using two dimensional simulations, the breakdown voltage and the specific on-resistance of the proposed structure are investigated for the columns parameters in comparison with a conventional UMOSFET (C-UMOSFET) and an accumulation layer UMOSFET (AL-UMOSFET) structures. For the NPC-UMOSFET with 10 µm drift region length the maximum breakdown voltage of 1274 V is obtained, while at the same drift region length, the maximum breakdown voltages of the C-UMOSFET and the AL-UMOSFET structures are 534 and 703 V, respectively. Moreover, the proposed structure exhibits a superior specific on-resistance (Ron,sp) of 2  cm2, which shows that the on-resistance of the optimized NPC-UMOSFET are decreased by 56% and 58% in comparison with the C-UMOSFET and the AL-UMOSFET, respectively.  相似文献   
4.
Soft robots built with active soft materials have been increasingly attractive. Despite tremendous efforts in soft sensors and actuators, it remains extremely challenging to construct intelligent soft materials that simultaneously actuate and sense their own motions, resembling living organisms’ neuromuscular behaviors. This work presents a soft robotic strategy that couples actuation and strain-sensing into a single homogeneous material, composed of an interpenetrating double-network of a nanostructured thermo-responsive hydrogel poly(N-isopropylacrylamide) (PNIPAAm) and a light-absorbing, electrically conductive polymer polypyrrole (PPy). This design grants the material both photo/thermal-responsiveness and piezoresistive-responsiveness, enabling remotely-triggered actuation and local strain-sensing. This self-sensing actuating soft material demonstrated ultra-high stretchability (210%) and large volume shrinkage (70%) rapidly upon irradiation or heating (13%/°C, 6-time faster than conventional PNIPAAm). The significant deswelling of the hydrogel network induces densification of percolation in the PPy network, leading to a drastic conductivity change upon locomotion with a gauge factor of 1.0. The material demonstrated a variety of precise and remotely-driven photo-responsive locomotion such as signal-tracking, bending, weightlifting, object grasping and transporting, while simultaneously monitoring these motions itself via real-time resistance change. The multifunctional sensory actuatable materials may lead to the next-generation soft robots of higher levels of autonomy and complexity with self-diagnostic feedback control.  相似文献   
5.
BACKGROUND: Over the past several decades methyl tert‐butyl ether (MTBE) as additive to gasoline, intended to either boost ratings of fuel or to reduce air pollution, has been accepted worldwide. Since MTBE has high water solubility, the occurrence of fuel spills or leaks from underground storage tanks or transferring pipeline has led to the contamination of natural waters. In this study the degradation of aqueous MTBE at relatively high concentrations was investigated by a UV‐visible/ZnO/H2O2 photocatalytic process. The effects of important operational parameters such as pH, amount of H2O2, catalyst loading and irradiation time were also investigated. Concentration of MTBE and intermediates such as tert‐butyl formate and tert‐butyl alcohol were measured. RESULTS: Time required for complete degradation increased from 20 to 150 min when the initial concentration was increased from 10 to 500 mg L?1. The first‐order rate constants for degradation of MTBE were estimated to be 0.183–0.022 min?1 as the concentration increased from 10 to 500 mg L?1. Study of the overall mineralization monitored by total organic carbon analysis showed that at an initial concentration of 100 mg L?1 MTBE complete mineralization was obtained after 100 min under UV‐visible/ZnO/H2O2 photocatalysis. CONCLUSION: The data presented in this paper clearly indicated that UV‐visible/ZnO/O2 as an advanced oxidation process provides an efficient treatment alternative for the remediation of MTBE‐contaminated waters. Copyright © 2008 Society of Chemical Industry  相似文献   
6.
Human cytomegalovirus (HCMV) belongs to the β-herpesvirus family, which is transmitted in almost every part of the world and is carried by more than 90% of the general population. Increasing evidence indicates that HCMV infection triggers numerous diseases by disrupting the normal physiological activity of host cells, particularly apoptosis. Apoptosis disorder plays a key role in the initiation and development of multiple diseases. However, the relationship and molecular mechanism of HCMV-related diseases and apoptosis have not yet been systematically summarized. This review aims to summarize the role of apoptosis in HCMV-related diseases and provide an insight into the molecular mechanism of apoptosis induced by HCMV infection. We summarize the literature on HCMV-related diseases and suggest novel strategies for HCMV treatment by regulating apoptosis.  相似文献   
7.
Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, and corresponding receptors, as well as intracellular emetic signaling pathways involved in the processes of nausea and vomiting in diverse animal models as well as humans. While blockade of emetic receptors in the prevention of vomiting is fairly well understood, the potential of new classes of antiemetics altering postreceptor signal transduction mechanisms is currently evolving, which is also reviewed. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide potential answers.  相似文献   
8.
A simple method for evaluating the surface acidity of different cation-exchanged montmorillonite (mont) clay catalysts, Mn+-mont (Mn+=Al3+, Fe3+, Cr3+, Zn2+, Ni2+, Cu2+, and H+), involving treatment with pyridine is described. After treating with pyridine, the samples were heated at 120 °C and the FT-IR spectra were directly recorded in the region 1650 and 1350 cm−1. The data obtained show the presence of both Lewis and Brønsted acid sites. The activities of the catalysts to bring about Brønsted acid catalysed esterification of succinic acid with iso-butanol to yield di-(iso-butyl) succinate have been studied. The Brønsted acidity data obtained for Mn+-mont correlated well with activity in the esterification reaction. The activities of the catalysts were found to decrease in the order of exchange ions Al3+ > Fe3+ > Cr3+ > Zn2+ > Ni2+ > Cu2+ > Na+-mont. They also correlated well with the charge to radius ratio of the cations. The catalysts exchanged with trivalent cations showed stronger absorption bands attributed to Brønsted acidity (1540 cm−1) whereas those exchanged with divalent cations showed an increased Lewis acidity (1450 cm−1) and reduced Brønsted acidity along with charge to radius ratio. Zn2+-, Cu2+- and Ni2+-exchanged clays showed an additional peak around 1605 cm−1 which is attributed to the pyridine adsorption on surface sites through its π electrons. The method suggested here to evaluate the acidity is suitable for active sites which are thermally unstable such as water molecules in the hydration shell of a cation in exchanged clay.  相似文献   
9.
This work studies the enzymatic degradation of polyurethanes (PUs) and segmented polyurethane ureas (SPUUs) derived from lysine diisocyanate (LDI) by various proteases. Thiol proteases, such as papain, bromelain, and ficin, showed high activity on PUs. Protease K and chymotrypsin also hydrolyzed the PUs. For almost all SPUUs, papain showed high activity. For example, LDI/poly(caprolactone) diol (Mw = 1250)/ethylene diamine (2/1/1) was hydrolyzed to 43% under the same conditions. The water-soluble degradation products of a polyurethane, LDI/BD (1/1), and two model compounds treated with papain were studied with NMR and GPC analysis. From the results, it was evident that the pendant methyl ester group in LDI was rapidly hydrolyzed, followed by slow hydrolysis of urethane bonds in the backbone chain.  相似文献   
10.
通过嫁接方法在包有二氧化硅的纳米CoFe2O4磁粒表面进行氨基化修饰,制备出一种可用于生物医学领域的新型氨基化纳米磁粒,采用TGA-DTA,IR,VSM和Zeta-potential等测定方法,对氨基化和未氨基化的CoFe2O4纳米粒子进行了表征。元素分析结果显示,有0.98 mmol/g的有机分子固定在纳米粒子表面;红外和热分析数据显示,带氨基的有机分子嫁接到磁粒表面的二氧化硅壳层上;Zeta电位数据也显示,带氨基的有机分子嫁接到纳米磁粒表面;样品的磁性参数显示,氨基化纳米磁粒仍具有好的磁学性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号