首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7599篇
  免费   1238篇
  国内免费   685篇
电工技术   4405篇
综合类   309篇
化学工业   542篇
金属工艺   120篇
机械仪表   231篇
建筑科学   75篇
矿业工程   35篇
能源动力   1123篇
轻工业   347篇
水利工程   169篇
石油天然气   453篇
武器工业   14篇
无线电   326篇
一般工业技术   348篇
冶金工业   89篇
原子能技术   288篇
自动化技术   648篇
  2024年   34篇
  2023年   253篇
  2022年   580篇
  2021年   583篇
  2020年   550篇
  2019年   475篇
  2018年   347篇
  2017年   360篇
  2016年   391篇
  2015年   356篇
  2014年   541篇
  2013年   718篇
  2012年   1085篇
  2011年   745篇
  2010年   584篇
  2009年   534篇
  2008年   240篇
  2007年   375篇
  2006年   304篇
  2005年   119篇
  2004年   42篇
  2003年   23篇
  2002年   41篇
  2001年   39篇
  2000年   38篇
  1999年   22篇
  1998年   19篇
  1997年   5篇
  1996年   11篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1989年   2篇
  1988年   12篇
  1987年   23篇
  1986年   17篇
  1981年   1篇
  1980年   1篇
  1959年   13篇
  1951年   3篇
排序方式: 共有9522条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(21):31995-32000
Among the existing material family of the correlated oxides, the rare earth nickelates (ReNiO3) exhibit broadly adjustable metal to insulator transition (MIT) properties that enables correlated electronic applications, such as thermistors, thermochromics, and logical devices. Nevertheless, how to accurately control the critical temperature (TMIT) of ReNiO3 via the co-occupation of the rare-earth elements is yet worthy to be further explored. Herein, we demonstrate the non-linearity in adjusting the TMIT of ReNiO3 towards lower temperatures via introducing Pr co-occupation within ReNiO3 (e.g., PrxNd1-xNiO3 and PrxSm1-xNiO3) as synthesized by KCl molten-salt assisted high oxygen pressure reaction approach. Although the TMIT is effectively reduced via Pr substitution, it does not strictly follow a linear relationship, in particular, when there is large difference in the ionic radius of the co-occupation rare-earth elements. Furthermore, the most significant deviation in TMIT from the expected linear relationship appears at an equal co-occupation ratio of the two different rare-earth elements, while the abruption in the variation of resistivity across TMIT is also reduced. The present work highlights the importance to use adjacent rare-earth elements with co-occupation ratio away from 1:1 for achieving more linear adjustment in designing the metal to insulator transition properties for ReNiO3.  相似文献   
2.
3.
This paper presents a fast distance relay for series compensated transmission lines based on the R–L differential-equation algorithm using the theory of equal transfer process of transmission lines. The measuring distances based on the proposed algorithm can fast approach the actual value of fault distance when a fault occurs in front of the series capacitor. When a fault occurs behind of the series capacitor, the fault loop, including the series capacitor, does not match the R–L transmission line model, so the measuring distances fluctuate severely. Based on this, the relative position of the fault with respect to the series capacitor can be judged effectively according to the fluctuation range of the measuring distances, and the accurate fault location can be obtained fast. A variety of PSCAD/EMTDC simulation tests show that the new relay has fast operating speed and high accuracy when applied to the long series compensated transmission lines.  相似文献   
4.
This paper describes algorithms that use demand-side management to address large-scale integration of wind power. In particular, demand response (DR) is used to manage wind power intermittency by shifting the time that electrical power system loads occur in response to real-time prices and wind availability. An economic dispatch with transmission, DR capacity and operational constraints is used to model the operation of a transmission constrained system with a high penetration of wind power. This optimization model is used to determine the optimal sizing and distribution of DR given a fixed budget for customer incentives and the installation of enabling technology. We demonstrate the effectiveness of the operational model based on a simple PJM 5-bus system and an IEEE 118-bus system. Simulation results show that transmission constraints have a greater effect on sizing of DR capacity than the location of wind power, which means that buses electrically close to congested lines tend to have higher incentives to deploy DR resources than other buses. The second part of the work examines optimal siting of technology that enables DR based on the frequency of DR based load changes, which are generally a function of the network location.  相似文献   
5.
The morphology of the photoactive layer critically affects the performance of the bulk heterojunction polymer solar cells (PSCs). To control the morphology, we introduced a hydrophobic fluoropolymer polyvinylidene fluoride (PVDF) as nonvolatile additive into the P3HT:PCBM active layer. The effect of PVDF on the surface and the bulk morphology were investigated by atomic force microscope and transmission electron microscopy, respectively. Through the repulsive interactions between the hydrophilic PCBM and the hydrophobic PVDF, much more uniform phase separation with good P3HT crystallinity is formed within the active layer, resulting enhanced light harvesting and improved photovoltaic performance in conventional devices. The PCE of the conventional device can improve from 2.40% to 3.07% with PVDF additive. The PVDF distribution within the active layer was investigated by secondary ion mass spectroscopy, confirming a bottom distribution of PVDF. Therefore, inverted device structure was designed, and the PCE can improve from 2.81% to 3.45% with PVDF additive. Our findings suggest that PVDF is a promising nonvolatile processing additive for high performance polymer solar cells.  相似文献   
6.
Solar thermochemical hydrogen production with energy level upgraded from solar thermal to chemical energy shows great potential. By integrating mid-and-low temperature solar thermochemistry and solid oxide fuel cells, in this paper, a new distributed energy system combining power, cooling, and heating is proposed and analyzed from thermodynamic, energy and exergy viewpoints. Different from the high temperature solar thermochemistry (above 1073.15 K), the mid-and-low temperature solar thermochemistry utilizes concentrated solar thermal (473.15–573.15 K) to drive methanol decomposition reaction, reducing irreversible heat collection loss. The produced hydrogen-rich fuel is converted into power through solid oxide fuel cells and micro gas turbines successively, realizing the cascaded utilization of fuel and solar energy. Numerical simulation is conducted to investigate the system thermodynamic performances under design and off-design conditions. Promising results reveal that solar-to-hydrogen and net solar-to-electricity efficiencies reach 66.26% and 40.93%, respectively. With the solar thermochemical conversion and hydrogen-rich fuel cascade utilization, the system exergy and overall energy efficiencies reach 59.76% and 80.74%, respectively. This research may provide a pathway for efficient hydrogen-rich fuel production and power generation.  相似文献   
7.
The present paper analyses the entropy generation of the fully developed laminar convection in a helical coil with constant wall heat flux and presents the optimal design based on the minimum entropy generation principal. The important design parameters, including Reynolds number (Re), coil-to-tube radius ratio (δ) and nondimensional coil pitch (λ) are varied to investigate their influences on the entropy generation. The results presented in this paper cover Re range of 100–10,000, δ and λ range from 0.01 to 0.3. Compared with Re and δ, the coil pitch λ is found to have minor influence on the entropy generation. For a demonstrated case, the minimum entropy generation occurs in the range bounded by Re from 2271 to 4277 and δ from 0.17 to 0.3, within which the irreversibility of the system is lowest and the system performance would be optimum. The details show that there is an optimal Re for a helical coil with a fixed δ; meanwhile for a helical coil flow with a specified Re, the smaller δ should be selected when the Re is larger than 5000, and the larger δ should be selected when the Re is less than 5000. These results provide worthwhile information for heat exchanger designers to find the optimal helical coil design from the viewpoint of the thermodynamic second law.  相似文献   
8.
《Energy》2005,30(2-4):247-260
In this study, an advanced cogeneration system (ACGS) composed of three turbine systems and an ammonia absorption refrigerator is presented. The overall system configurations and some experimental results of the steady state are shown. The effectiveness of the bottoming stage that employs an ammonia–water mixture (AWM) as the working fluid is confirmed by experimental investigation. The experimental investigation shows that the AWM bottoming power-refrigeration cycles contributes to a higher bottoming efficiency, which is about 7.0% in electric power. Otherwise, the efficiency at the middle stage in conventional combined gas and steam turbine power plants is 4.6%. The cogeneration efficiency at the bottoming reached about 26.5% which is the heat and power ratio to the heat input from the heat recovery steam generator.  相似文献   
9.
水库移民安置区的优化选择关系到移民社区未来的社会稳定和可持续发展。为此,对影响移民安置区的指标体系进行了研究,利用模糊理论建立了优选模型,并通过江垭水库移民安置区的实际情况对模型进行了验证。结果表明,研究采用的指标体系和方法可满足移民安置区优选的需要。  相似文献   
10.
胡松  刘强  刘鹰 《钢结构》2004,19(6):54-55,22
首都师范学院国际文化学院大厦工程中有两个距地面 2 5m的过廊。在施工中采用另外设立钢结构临时施工平台的方法 ,与传统的搭设满堂脚手架的施工方法相比 ,为过廊的施工节省了工期和造价  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号