首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
能源动力   1篇
无线电   1篇
  2023年   1篇
  2020年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
《能源学会志》2020,93(3):1020-1035
The present study relates to the investigation of degradation of polymers such as HDPE, PP, PS and PET individually and in mixed forms. Eleven different mixture combinations were analyzed via TG Analysis to determine their degradation behavior individually and in mixed forms. FTIR analysis of the raw polymers was performed to investigate the presence of different functional groups in the sample. Online TG-FTIR analysis was performed to investigate the functional groups present in the volatiles fractions during single component pyrolysis and the interaction of polymers during co-pyrolysis was analyzed, compared and reported. Also, a real-world post consumer mixed waste was also analyzed and compared. During the co-pyrolysis of HDPE with PP and PS, the degradation of PP was delayed whereas PS reduced the degradation temperature of HDPE. In the case of degradation of PS with PP and PET, the increase in degradation temperature was reported whereas, in the case of PET and HDPE mixture, the degradation temperature of HDPE was reduced. During the interaction of PP and PET mixed degradation, PET degradation temperature was delayed. During the FTIR analysis a large amount of alkanes, alkenes, aromatics groups were observed during the degradation of HDPE, PP and PS whereas in case of PET the presence of oxygenated groups is observed. During the mixed degradation, the presence of PET in the sample caused the formation of oxygenated groups by reducing the absorption intensity of other groups or by disappearing the groups. Compounds such as benzoic acid, CO and CO2 was detected during the degradation of PET whereas in other polymers a large amount of methane or methylene group is observed. Overall during the degradation of mixed polymer mixture presence of PET played a vital role in the formation of light gas fractions. Even though a numerous investigation on co-pyrolysis of polymers were available, there is still not sufficient information of interaction of polymers with each other, especially with PET. This article attempts to fill this gap.  相似文献   
2.
Strong metal-support interaction (SMSI) greatly improves the performances of various supported metal nanoparticle catalysts. Classical SMSI relies on the oxide species with substoichiometric oxygen concentration, which prefers to retreat off in humid and oxidative atmospheres. A SMSI is reported with oxygen-saturated overlayers on Au/TiO2 catalyst achieved by steaming treatment, an opposite condition to the classical SMSI formation. Through a combination of experimental and theoretical methods, this study demonstrates that the strong interactions between the TiOxHy (x≥2) species and Au surface cause the support migration to encapsulate Au nanoparticles. The oxygen-saturated oxide overlayers are stable in oxidative, reductive, and humid atmospheres, providing great vitality to stabilize metal nanoparticle catalysts under varied and complex reaction conditions to outperform the classical SMSI.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号