首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   23篇
电工技术   1篇
综合类   1篇
化学工业   29篇
金属工艺   1篇
机械仪表   2篇
建筑科学   1篇
矿业工程   3篇
能源动力   11篇
轻工业   178篇
水利工程   1篇
石油天然气   42篇
无线电   7篇
一般工业技术   6篇
冶金工业   2篇
自动化技术   8篇
  2024年   2篇
  2023年   6篇
  2022年   17篇
  2021年   15篇
  2020年   15篇
  2019年   13篇
  2018年   10篇
  2017年   22篇
  2016年   28篇
  2015年   21篇
  2014年   18篇
  2013年   9篇
  2012年   7篇
  2011年   8篇
  2010年   15篇
  2009年   12篇
  2007年   9篇
  2006年   9篇
  2005年   12篇
  2004年   2篇
  2003年   8篇
  2002年   4篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1991年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
排序方式: 共有293条查询结果,搜索用时 31 毫秒
1.
To reduce the energy consumption of the shrimp blanching process and improve the economic value of the blanched product, a transcritical CO2 heat pump blanching system (THPB system) was designed in this paper. The trends of astaxanthin were investigated at atmospheric pressure near boiling temperature, combined with the color and structural properties of shrimp samples, and the optimal blanching times of 270 s and 240 s were obtained at 90°C and 95°C, respectively. In contrast to the fuel blanching system (FB system) at 100°C, the annual standard coal consumption of the THPB system with 90°C blanching is decreased by 79%, and the annual operating cost can be saved by CNY 63,800, with a payback period of about 3.13 years.Industrial relevanceBlanching is one of the effective ways to prolong the shelf life of shrimp. However, the research on the blanching time and temperature of shrimp is not comprehensive. In addition, the traditional fuel blanching process has high energy consumption and pollution, and can no longer meet the quality requirements of the modern food processing industry. Heat pump has been shown to have better performance in food drying, but it is less used in blanching. The information presented in this study may provide other insights into food processing.  相似文献   
2.
The objective of this study was to determine the effect of temperature on whole milk density measured at four different temperatures: 5, 10, 15, and 20 °C. A total of ninety-three individual milk samples were collected from morning milking of thirty-two Holstein Friesian dairy cows, of national average genetic merit, once every two weeks over a period of 4 weeks and were assessed by Fourier transform infrared spectroscopy for milk composition analysis. Density of the milk was evaluated using two different analytical methods: a portable density meter DMA35 and a standard desktop model DMA4500M (Anton Paar GmbH, UK). Milk density was analysed with a linear mixed model with the fixed effects of sampling period, temperature and analysis method; triple interaction of sampling period x analysis method x temperature; and the random effect of cow to account for repeated measures. The effect of temperature on milk density (ρ) was also evaluated including temperature (t) as covariate with linear and quadratic effects within each analytic method. The regression equation describing the curvature and density–temperature relationship for the DMA35 instrument was ρ = 1.0338−0.00017T−0.0000122T2 (R2 = 0.64), while it was ρ = 1.0334 + 0.000057T−0.00001T2 (R2 = 0.61) for DMA4500 instrument. The mean density determined with DMA4500 at 5 °C was 1.0334 g cm−3, with corresponding figures of 1.0330, 1.0320 and 1.0305 g cm−3 at 10, 15 and 20 °C, respectively. The milk density values obtained in this study at specific temperatures will help to address any bias in weight–volume calculations and thus may also improve the financial and operational control for the dairy processors in Ireland and internationally.  相似文献   
3.
Iron–peptide complexes have been considered a promising source of more bioavailable iron, with reduced side effects as compared to iron salts. Whey protein isolate (WPI) hydrolyzed by alcalase, pancreatin or flavourzyme was ultrafiltered (cut off 5 kDa) and their fractions – retentates and filtrates – were evaluated for iron-binding capacity. The Fe–hydrolysate complexation reaction resulted in a dramatic increase in iron solubility at pH 7.0, from 0% to almost 100%. This result was obtained regardless of the molecular mass profile or the enzyme used to obtain the samples. Fractions from hydrolysate obtained with pancreatin (HP) were chosen to continue the study. The complexes formed with both fractions from HP were stable under simulated gastric digestion (50.8–89.4%). To identify the peptides with iron-binding capacity, the HP fractions were isolated by IMAC-Fe3 +, and the retentate showed higher relative concentrations of iron-binding peptides than the filtrate. Iron-binding peptide sequencing, accomplished by LC–MS/MS, showed Glu and/or Asp in all the sequences, and their carboxylic groups were amongst the main iron-binding sites. WPI hydrolysis with pancreatin yields peptides that can form iron complexes with the potential to increase iron bioavailability and reduce its pro-oxidant effect.  相似文献   
4.
5.
《Food Control》2006,17(8):676-679
In this study, the presence of Listeria spp. was investigated in a total of 157 raw milk and dairy product samples sold in Antakya (Antioch). The prevalence of Listeria spp. in raw milk and Turkish white cheese samples was found to be 2.12% and 8.23%, respectively. Listeria monocytogenes was not isolated from raw milk and found in only two cheese samples (2.35%). No Listeria spp. were isolated in any of the butter and yoghurt samples.  相似文献   
6.
Efforts to reduce the carbon footprint of milk production through selection and management of low-emitting cows require accurate and large-scale measurements of methane (CH4) emissions from individual cows. Several techniques have been developed to measure CH4 in a research setting but most are not suitable for large-scale recording on farm. Several groups have explored proxies (i.e., indicators or indirect traits) for CH4; ideally these should be accurate, inexpensive, and amenable to being recorded individually on a large scale. This review (1) systematically describes the biological basis of current potential CH4 proxies for dairy cattle; (2) assesses the accuracy and predictive power of single proxies and determines the added value of combining proxies; (3) provides a critical evaluation of the relative merit of the main proxies in terms of their simplicity, cost, accuracy, invasiveness, and throughput; and (4) discusses their suitability as selection traits. The proxies range from simple and low-cost measurements such as body weight and high-throughput milk mid-infrared spectroscopy (MIR) to more challenging measures such as rumen morphology, rumen metabolites, or microbiome profiling. Proxies based on rumen samples are generally poor to moderately accurate predictors of CH4, and are costly and difficult to measure routinely on-farm. Proxies related to body weight or milk yield and composition, on the other hand, are relatively simple, inexpensive, and high throughput, and are easier to implement in practice. In particular, milk MIR, along with covariates such as lactation stage, are a promising option for prediction of CH4 emission in dairy cows. No single proxy was found to accurately predict CH4, and combinations of 2 or more proxies are likely to be a better solution. Combining proxies can increase the accuracy of predictions by 15 to 35%, mainly because different proxies describe independent sources of variation in CH4 and one proxy can correct for shortcomings in the other(s). The most important applications of CH4 proxies are in dairy cattle management and breeding for lower environmental impact. When breeding for traits of lower environmental impact, single or multiple proxies can be used as indirect criteria for the breeding objective, but care should be taken to avoid unfavorable correlated responses. Finally, although combinations of proxies appear to provide the most accurate estimates of CH4, the greatest limitation today is the lack of robustness in their general applicability. Future efforts should therefore be directed toward developing combinations of proxies that are robust and applicable across diverse production systems and environments.  相似文献   
7.
The suitability of molasses, Napier grass (Pennisetum purpureum), empty fruit bunches (EFB), palm oil mill effluent (POME), and glycerol waste as a co-substrate with Chlorella sp. TISTR 8411 biomass for biohythane production was investigated. Mono-digestion of Chlorella biomass had hydrogen and methane yield of 23–35 and 164–177 mL gVS−1, respectively. Co-digestion of Chlorella biomass with 2–6% TS of organic wastes was optimized for biohythane production with hydrogen and methane yield of 17–75 and 214–577 mL gVS−1, respectively. The hydrogen and methane yield from co-digestion of Chlorella biomass with molasses, POME, and glycerol waste was increased by 8–100% and 80–264%, respectively. The biohythane production of co-digestion of Chlorella was 6–11 L L-mixed waste−1 with an optimal C/N ratio range of 19–41 and H2/CH4 ratio range of 0.06–0.3. Co-digestion of Chlorella biomass was significantly improved biohythane production in term of yield, production rate, and kinetics.  相似文献   
8.
Salmonella Enteritidis (SE) is a common foodborne pathogen associated with eggs and egg products. This research was conducted to study the kinetics of growth and survival of SE in liquid egg whites (LEW). A dynamic temperature profile that exposed SE to suboptimal temperatures and below the minimum growth temperature (Tmin) was used with two isothermal conditions to develop kinetic models. One-step dynamic analysis was used to directly construct a tertiary model for describing the growth and survival of SE and determine the kinetic parameters.The results of kinetic analysis showed that the Tmin was 7.7 °C and SE may die off at a rate of 2.78 × 10−3 log CFU/ml per h per °C below the Tmin. The root mean square error (RMSE) of the model was 0.5 log CFU/ml, with 76.6% of the residual errors within ±0.5 log CFU/ml of the experimental observations. The model was validated under both dynamic temperature and isothermal conditions. Both growth and survival of SE was accurately predicted, with the RMSE of validation at < 0.5 log CFU/ml. For all the validation tests, nearly 75% of the residual errors were within ±0.5 log CFU/ml of the experimental observations.This study clearly demonstrated that the one-step dynamic analysis method is an accurate and efficient method for direct construction of predictive models and estimation of the associated kinetic parameters that govern the growth and survival of microorganisms in food. Since the mathematical model has been validated, it can be used to predict the growth and survival of SE in LEW during storage and distribution and for conducting risk assessment of this microorganism.  相似文献   
9.
10.
Milk fat globule (MFG) size and phospholipids (PL) content and composition were determined in milk collected at 65 (pretreatment), 110, 135 and 170 days of lactation from goats randomly assigned to grazing in Mediterranean brushland or fed clover hay indoors, in addition to concentrate. Daily feed intake and dietary contents of neutral detergent fibre and acid detergent fibre were higher in grazing goats, associated with milk richer in fat, with larger MFGs and 20% higher PL content. Smaller MFGs, produced by all confinement groups, was associated with 15 μg g−1 fat higher milk PL content. The greatest effect was found in the Damascus goats, with over 44% higher PL concentration, on milk fat basis, in the confined compared with grazing group. Our understanding of how PL content is modulated by the interaction between genetic background and nutrition will enable to achieve either PL-rich milk or PL-enriched milk fat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号