首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   12篇
综合类   1篇
化学工业   42篇
金属工艺   3篇
能源动力   14篇
轻工业   12篇
石油天然气   1篇
无线电   8篇
一般工业技术   21篇
自动化技术   4篇
  2024年   5篇
  2023年   11篇
  2022年   4篇
  2021年   9篇
  2020年   14篇
  2019年   17篇
  2018年   10篇
  2017年   7篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1994年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有106条查询结果,搜索用时 218 毫秒
1.
2.
Platinum (Pt) is regarded as a promising electrocatalyst for hydrogen evolution reaction (HER). However, its application in an alkaline medium is limited by the activation energy of water dissociation, diffusion of H+, and desorption of H*. Moreover, the formation of effective structures with a low Pt usage amount is still a challenge. Herein, guided by the simulation discovery that the edge effect can boost local electric field (LEF) of the electrocatalysts for faster proton diffusion, platinum nanocrystals on the edge of transition metal phosphide nanosheets are fabricated. The unique heterostructure with ultralow Pt amount delivered an outstanding HER performance in an alkaline medium with a small overpotential of 44.5 mV and excellent stability for 80 h at the current density of −10 mA cm−2. The mass activity of as-prepared electrocatalyst is 2.77 A mg−1Pt, which is 15 times higher than that of commercial Pt/C electrocatalysts (0.18 A mg−1Pt). The density function theory calculation revealed the efficient water dissociation, fast adsorption, and desorption of protons with hybrid structure. The study provides an innovative strategy to design unique nanostructures for boosting HER performances via achieving both synergistic effects from hybrid components and enhanced LEF from the structural edge effect.  相似文献   
3.
4.
In this paper, experiments carried out to measure data throughput between an LSI 11/23 computer and a VAX 11/750 computer over an Ethernet local area network are described. Data were transferred from the LSI to the VAX in three experiments to study the effect of memory-to-memory, memory-to-disc and disc-to-disc data transfer with respect to packet size and acknowledge window size. The results show data throughput to range from 0.86 to 0.49 Mbits s−1 and suggest where the rate-limiting processes are located.  相似文献   
5.
The activity of transition metal dichalcogenides (TMD) toward hydrogen evolution reaction (HER) derives from the active sites at the edges, but the basal surface still remain catalytic insert. Herein, ultrathin MoSSe alloy nanosheets array on multiwalled carbon nanotubes (MWCNTs) to form a core shell structure via a simple solvothermal process. These three-dimensional (3D) MoSSe hybrids show a high activity in hydrogen evolution reaction (HER) with a small Tafel slope of 38 mV dec−1 and a low overpotential of 102 mV at 10 mA cm−2. In addition, their HER activity remains remarkably stable without significant decay after 100 h polarization. Such superior catalytic HER activity springs from the 3D hierarchical heterostructure, which is abundant of catalytic edge sites, and the alloy effect between S and Se, which will create huge defects and strain to form vacancy sites on the basal plane. This strategy may open a new avenue toward the development of nonprecious high-performance HER catalysts.  相似文献   
6.
Exploring and designing efficient non-noble catalysts formed by element doping and nanostructure modification for the hydrogen evolution reaction (HER) is of critical importance with respect to sustainable resources. Herein, we have prepared a three-dimensional binary NiCo phosphide with hierarchical architecture (HA) composed of NiCoP nanosheets and nanowires grown on carbon cloth (CC) via a facile hydrothermal method followed by oxidation and phosphorization. Due to its unique hierarchical nanostructure, the NiCoP HA/CC electrocatalyst exhibits excellent performance and good working stability for the HER in both acidic and alkaline conditions. The obtained NiCoP HA/CC shows excellent HER activity with a low potential of 74 and 89 mV at 10 mA cm−2, a small Tafel slope of 77.2 and 99.8 mV dec−1 and long-term stability up to 24 h in acidic and alkaline electrolyte, respectively. NiCoP HA/CC, a non-noble metal material, is a promising electrocatalyst to replace noble metal-based electrocatalysts for the HER.  相似文献   
7.
In this contribution, we reported the preparation of a novel conducting polymer hydrogel (CPH) by a sol-gel method, which was subsequently employed to fabricate a flexible all-solid-state supercapacitor device. Taking advantage of the synergistic effects of the different components in the conducting polymer hydrogel and the merits of the proposed synthesis strategies, the prepared supercapacitor device with CPH as electrode exhibited high area-normalized capacitance (2.2 F cm−2), high gravimetric capacitance (1573.6 F g−1) as well as high energy density of 0.18 mWh cm−2 (or 128.7 Wh Kg−1) at 0.08  mW cm−2 (or 55.1 W kg−1). This study did not only represent a novel all-solid-state, high performance, flexible supercapacitor with potential applications in flexible energy-related devices, but also developed a new method for enhancing capacitances and mechanical stability of all-solid-state flexible supercapacitor.  相似文献   
8.
Development of highly efficient electrocatalysts to produce hydrogen has been a significant topic over the past few decades. Currently, the platinum metal group shows the best catalytic performance for the hydrogen evolution reaction (HER), but the high cost and low abundance of these materials limit their wider application. Therefore, we synthesized transition-metal-based NiCoS along with carbon dots (C-dots) as a structure-directing agent by a hydrothermal method. We also synthesized sulfur-doped NiCo, where the sulfur enhances the conductivity of the catalysts. Herein, the synthesis temperatures were changed in the range from 120 to 240 °C. Among all, NiCoS synthesized at 150 °C shows the best HER performance capabilities. In more detail, NiCoS prepared at this temperature exhibits an onset potential of 96 mV and an overpotential of 232 mV. Especially, as-prepared NiCoS nanoflower subjects to long-term stability over 20 h at a current density of 10 mA/cm2, making it a promising low-cost candidate for hydrogen production.  相似文献   
9.
《Ceramics International》2016,42(14):15876-15880
The influence of ZnO nanoseeds on the formation of ZnO nanorods from ε-Zn(OH)2 in NaOH solution at 80 °C was investigated, using ZnO nanoparticles with a diameter of 4–10 nm as the seeds. The experimental results indicated that the presence of ZnO nanoseeds promoted the rapid heterogeneous formation of ultrathin ZnO nanorods. Compared with the ZnO submicron rods with a diameter of 0.5–1.0 µm, the ultrathin ZnO nanorods with a diameter of 10–15 nm were found to be more sensitive for detecting NO2 at room temperature owing to their higher variation of channel conduction to the diameter.  相似文献   
10.
《Ceramics International》2017,43(2):1870-1879
A cost-effective solution method was developed to produce ZnO photocatalyst in large quantity, through the conversion of ε-Zn(OH)2 to ZnO in NaOH solutions. Experimental results indicated that the concentrated NaOH solution (4 mol L−1) promoted the rapid formation of ZnO owing to the enhanced dissolution-precipitation reactions. The large-scale synthesis was also achieved with high-yield and solvent-recyclability. Structural analysis based on X-ray photoelectron spectroscopy, electron spin resonance and photoluminescence revealed that the as-prepared ZnO photocatalyst was rich in oxygen vacancies (VO). The VO-rich ZnO photocatalyst exhibited improved visible-light absorption, higher photocurrent responses and superior activities toward the degradation of rhodamine B under both UV (λ~254 nm) and visible-light illumination (λ>420 nm) compared to commercial ZnO and P25 TiO2 powders, as well as good cycle stability. Based on the results of photoluminescence and active species detection, the VO-enhanced photocatalytic activity was attributed to the generation of VO-isolated level in the band structure. Under UV light, the VO-level could promote charge separation by trapping the photoinduced electrons, while under visible-light, the VO-level improved visible-light absorption and facilitated the charge generation. The presently developed synthesis may potentially benefit the large-scale production and low-cost application of ZnO photocatalyst for solar energy utilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号