首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20378篇
  免费   1019篇
  国内免费   244篇
电工技术   95篇
综合类   174篇
化学工业   7845篇
金属工艺   1311篇
机械仪表   156篇
建筑科学   96篇
矿业工程   151篇
能源动力   3265篇
轻工业   401篇
水利工程   21篇
石油天然气   133篇
武器工业   10篇
无线电   1937篇
一般工业技术   4892篇
冶金工业   429篇
原子能技术   102篇
自动化技术   623篇
  2024年   44篇
  2023年   1728篇
  2022年   616篇
  2021年   751篇
  2020年   1520篇
  2019年   1282篇
  2018年   491篇
  2017年   1231篇
  2016年   1210篇
  2015年   1243篇
  2014年   1488篇
  2013年   1174篇
  2012年   956篇
  2011年   944篇
  2010年   682篇
  2009年   865篇
  2008年   310篇
  2007年   877篇
  2006年   850篇
  2005年   432篇
  2004年   261篇
  2003年   327篇
  2002年   415篇
  2001年   370篇
  2000年   254篇
  1999年   313篇
  1998年   141篇
  1997年   51篇
  1996年   123篇
  1995年   122篇
  1994年   88篇
  1993年   57篇
  1992年   69篇
  1991年   74篇
  1990年   68篇
  1989年   91篇
  1988年   108篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   2篇
  1975年   2篇
  1966年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
2.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
3.
To the best of our knowledge, this is the first time to report the preparation of a dotted nanowire arrayed by 5 nm sized palladium and nickel composite nanoparticles (denoted as PdxNiy NPs) via a hydrothermal method using NU and PdO·H2O as the starting materials. The samples prepared at the mass ratio of NU to PdO·H2O 1:1, 1:2 and 2:1 were, respectively, nominated as catalyst c1, c2 and c3. The chemical compositions of all synthesized catalysts were mainly studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), revealing that metallic Ni was one main component of all prepared catalysts. Surprisingly, the main diffraction peaks appearing in the XRD patterns of all prepared catalysts were assigned to the metallic Ni rather than the metallic Pd. Very interestingly, as indicated by the TEM images, a large number of dotted nanowires arrayed by numerous equidistant 5 nm sized nanoparticles were distinctly exhibited in catalyst c1. More importantly, when being used as electrocatalysts for EOR, all prepared catalysts exhibited an evident electrocatalytic activity towards EOR. In the cyclic voltammetry (CV) test, the peak current density of the forward peak of EOR on catalyst c1 measured at 50 mV s?1 was as high as 56.1 mA cm?2, being almost 9 times higher than that of EOR on catalyst c3 (6.3 mA cm?2). Particularly, the polarized current density of EOR on catalyst c1 at 3600 s, as indicated by the chronoamperometry (CA) experiment, was still maintained to be around 1.47 mA cm?2, a value higher than the latest reported data of 1.3 mA cm?2 (measured on the pure Pd/C electrode). Presenting a novel method to prepare dotted nanowires arranged by 5 nm sized nanoparticles and showing the significant eletrocatalytic activities of the newly prepared dotted nanowires towards EOR were the major contributions of this preliminary work.  相似文献   
4.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
5.
《Ceramics International》2021,47(23):33223-33231
The effects of pH of the reaction solution and the concentration of phosphoric acid on the crystal growth behavior of LaPO4 crystallites were investigated and the mechanical properties of rare-earth phosphates were compared. As a result, the concentration of phosphoric acid of 10% was beneficial to the crystal growth of LaPO4 nanocrystalline. When the pH value of the reaction solution was 2, the size of LaPO4 crystallites increased gradually with the increasing reaction temperature, and the smallest crystallite size of 43.27 nm was obtained after heat-treatment at 1000 °C. Simultaneously, the activation energy for crystal growth of LaPO4 nanocrystalline was relatively lower (26.82 kJ mol−1). With the decreasing radii of rare-earth ions, the hardness, Young's modulus and fracture toughness of the bulk rare-earth phosphates exhibited a reduced tendency, resulted from the increase of porosity under the same preparation process.  相似文献   
6.
《Ceramics International》2022,48(1):495-502
Preparation and growth mechanism of anodization of Ti and Al has been widely concerned for two decades, but the research on anodic ZrO2 is relatively lacking. In this paper, anodic TiO2 and ZrO2 nanotubes were prepared in glycerol electrolyte containing 0.35 M NH4F and 4 vol% H2O under different anodizing voltages. We had successfully prepared the anodic ZrO2 nanotubes (AZNTs) with a complete top and a “bulb” at the bottom under 60 V, and with the increase of the applied anodizing voltage, the “bulb” cavity also increased. However, under the same anodizing conditions, the surface of anodic TiO2 nanotubes (ATNTs) is a cluster of nano-tip morphology, and the bottom of the ATNTs is a conventional hemisphere shape. In addition, both AZNTs and porous anodic zirconia (PAZ) were found to coexist in the anodic ZrO2 layer prepared at 60 V. Here, we used the oxygen bubble model and ionic current and electronic current theories to analyze the reason of the special morphology. It is confirmed that the porous anodic oxides are actually evolved from nanotubes. In other words, the structure is essentially the same.  相似文献   
7.
《Ceramics International》2021,47(23):32521-32533
In the current report, pure V2O5, a series of Gd doped V2O5 (1 wt%, 3 wt%, 5 wt% and 10 wt%) and graphene integrated Gd–V2O5 photocatalysts have been prepared using a facile wet chemical approach. The effect of Gd+3 ions substitution and RGO support on V2O5 was studied by the different analytical techniques. X-ray diffraction (XRD) results showed the orthorhombic crystal structure of synthesized samples with crystallize size in range of 22–35 nm. Morphological analysis showed nanorods and nanorod arrays like appearance of V2O5, Gd–V2O5 and GdV-2O5/RGO, respectively. Gd–V2O5 and Gd–V2O5/RGO exhibited enhanced optical response in the visible region along with decrease in the band gap values for Gd doped V2O5 samples. BET surface area of Gd–V2O5 and Gd- V2O5/RGO was calculated as 12.39 g/m2 and 15.35 g/m2 that was found to be higher than pristine V2O5. To study the photocatalytic activity of synthesized photocatalysts, methylene blue (MB) was chosen as model pollutant. Among the Gd doped V2O5 samples, highest photocatalytic activity (45.62%) was achieved by optimal concentration of 5 wt% Gd–V2O5 that is accredited to effective separation of electron-hole pairs. While Gd–V2O5/RGO showed 2.1 times higher dye removal (97.12%) than unsupported Gd–V2O5, under the visible light irradiation. The significantly high photocatalytic activity of Gd–V2O5/RGO is due to the synergistic effect aroused by combined action of Gd+3 ions doping and advantageous properties of highly conductive and large surfaced graphene. Recycling experiments for V2O5 derivatives showed good stability and recyclability of photocatalysts. Additionally, Gd–V2O5/RGO was found to be more potential anti-bacterial agent than V2O5 and Gd–V2O5.  相似文献   
8.
《Ceramics International》2022,48(11):15043-15055
This work reports magnetic permeability and ammonia gas sensing characteristics of La3+ substituted Co–Zn nano ferrites possessing chemical formula Co0.7Zn0.3LaxFe2-2xO4 (x = 0–0.1) synthesized by a sol-gel route. Refinement of X-ray diffraction (XRD) patterns of the ferrite powders by the Rietveld technique has revealed the creation of single-phase spinel structure. The tenancy of constituent cations at tetrahedral/octahedral sites was obtained from the refinement of XRD. The crystallite sizes calculated from the W–H method vary from 20 to 24 nm. The scanning electron microscope (SEM) profiles of the ferrite samples were analyzed for the morphological details. The energy dispersive X-ray analysis (EDAX) patterns of the samples were obtained to test the elemental purity of the ferrites within their stoichiometry. The transmission electron microscope (TEM) image of the ferrite (x = 0.1) exhibits the spherical and oval shaped particles with a mean size of 20 nm. Fourier transform infra-red (FTIR) spectra were analyzed to confirm the superseding of La3+ cations at octahedral sites. The Brunauer-Emmett-Teller (BET) analysis of nitrogen adsorption-desorption isotherms of the ferrites was performed to investigate the porous structure and to determine the surface area of the nanocrystalline ferrites. The oxidation states of the constituent ions were confirmed by means of X-ray photoelectron spectroscopy (XPS). The complex permeability as a function of frequency was studied to explore the effects of structural parameters on the magnetic behaviour of the ferrites. Analysis of gas sensing properties of the ferrites have proved that the Co–Zn–La ferrite with controlled La composition can be utilized as an effective ammonia gas sensing material in commercial gas sensors.  相似文献   
9.
Recently, the graphite based heterogeneous photocatalysts has attained tremendous research attention in various environmental applications. Among them, the graphitic carbon nitride (g-C3N4) is categorized as a unique solar active particle with its outstanding intrinsic properties i.e., adequate band configuration, excellent light absorptivity and thermo-physical durability, which make it highly useful and reliable for revenue transformation and ecological concerns. Considering the intrinsic potential of g-C3N4 in photocatalysis, so far, no report has been done in literature for its extraordinary configuration, morphological characteristics and perspective tuning for said applications. To overcome this research gap, our primary emphasis of this review regarding photocatalysis is to provide layout as well as the advancement of visible-light-fueled materials as highly stabilized and extremely effective ones for pragmatic implementation. Thus, this existing comprehensive assessment conducts a systematic survey over visible light driven non-metal novel g-C3N4. The major advancement of this evaluation is the fabrication of well-designed nanosized g-C3N4 photocatalysts with unique configurable frameworks and compositions. Furthermore, alternative techniques in order to customize the analogue band configuration and noticeable cultivation such as metal (cation), nonmetal (anion) doping, worthy metal activating, and alloy initiation with certain semiconductors are discussed in detail. In addition to this, g-C3N4 photocatalytic functionalities towards photocatalytic hydrogen evolution, CO2 photoreduction, biological metal ions deterioration as well as bacterial sanitization are also presented and discussed in detail. Therefore, we believe that such a pivotal compact assessment can provide a roadmap in several perspectives on the currently underway obstacles in the innovation of effective g-C3N4 catalytic design processes. Moreover, this critical assessment will ultimately serve as a useful supplement in the research area of g-C3N4 nanosized photocatalysts and for the researchers working on its key aspects in diverse range of natural, chemistry, engineering and environmental applications.  相似文献   
10.
《Ceramics International》2020,46(14):22282-22289
Self-assembly is an emerging strategy for preparing composite cathodes with good oxygen electrochemical reduction activity and congenital chemical compatibility for intermediate-temperature solid oxide fuel cell (IT-SOFC). Here we report that a self-assembled BaCo0.6Zr0.4O3-δ (BZC-BC) nanocomposite is prepared through one-pot glycine-nitrate process and exhibits high cathode performance. The BZC-BC nanocomposite is composed of 62 mol% cubic perovskite BaZr0.82Co0.18O3-δ (BZC) as an ionic conductor and 38 mol% hexagonal perovskite BaCo0.96Zr0.04O2.6+δ (12H-BC) as a mixed ionic and electronic conductor. The BZC-BC nanocomposite has the pomegranate-like particles aggregated with a larger number of nanoparticles (50-100 nm) which greatly enlarge the three-phase boundary sites. The BZC-BC nanocomposite exhibits a thermal expansion coefficient of 12.89 × 10−6 K−1 well-matched with that of Ce0.8Gd0.2O3-δ (12.84 × 10−6 K−1) electrolyte. The high electro-catalytic activity of BZC-BC nanocomposite cathode for oxygen reduction is reflected by the low polarization resistances of oxygen ions incorporation at cathode/electrolyte interface (0.02823 Ω cm2), oxygen species diffusion (0.03702 Ω cm2) and oxygen adsorptive dissociation (0.07609 Ω cm2) at 700 °C. The single cell with BZC-BC nanocomposite cathode achieves the maximum power density of 1094 mW cm−2 at 650 °C and shows good stability under 25 h run.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号