首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21170篇
  免费   2740篇
  国内免费   1096篇
电工技术   333篇
综合类   1184篇
化学工业   4993篇
金属工艺   1446篇
机械仪表   681篇
建筑科学   676篇
矿业工程   144篇
能源动力   1703篇
轻工业   3763篇
水利工程   229篇
石油天然气   270篇
武器工业   37篇
无线电   2145篇
一般工业技术   3776篇
冶金工业   356篇
原子能技术   71篇
自动化技术   3199篇
  2024年   86篇
  2023年   1011篇
  2022年   878篇
  2021年   1104篇
  2020年   1297篇
  2019年   1096篇
  2018年   952篇
  2017年   1135篇
  2016年   1166篇
  2015年   1287篇
  2014年   1525篇
  2013年   1489篇
  2012年   1928篇
  2011年   1671篇
  2010年   1294篇
  2009年   1375篇
  2008年   790篇
  2007年   1335篇
  2006年   1172篇
  2005年   492篇
  2004年   285篇
  2003年   265篇
  2002年   251篇
  2001年   239篇
  2000年   159篇
  1999年   160篇
  1998年   85篇
  1997年   42篇
  1996年   72篇
  1995年   58篇
  1994年   65篇
  1993年   54篇
  1992年   48篇
  1991年   44篇
  1990年   40篇
  1989年   31篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1982年   4篇
  1976年   1篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Raney-type Ni precursor alloys containing 75 at.% Al and doped with 0, 0.75, 1.5 and 3.0 at.% Ti have been produced by a gas atomization process. The resulting powders have been classified by size fraction with subsequent investigation by powder XRD, SEM and EDX analysis. The undoped powders contain, as expected, the phases Ni2Al3, NiAl3 and an Al-eutectic. The Ti-doped powders contain an additional phase with the TiAl3 DO22 crystal structure. However, quantitative analysis of the XRD results indicate a far greater fraction of the TiAl3 phase is present than could be accounted for by a simple mass balance on Ti. This appears to be a (TixNi1−x)Al3 phase in which higher cooling rates favour small x (low Ti-site occupancy by Ti atoms). SEM and EDX analysis reveal that virtually all the available Ti is contained within the TiAl3 phase, with negligible Ti dissolved in either the Ni2Al3 or NiAl3 phases.  相似文献   
42.
《Ceramics International》2020,46(15):23417-23426
Yttria stabilized hafnia (Hf0.84Y0.16O1.92, YSH16) coatings were sprayed by atmospheric plasma spraying (APS). The effects of thermal aging at 1400 °C on the microstructures, mechanical properties and thermal conductivity of the coatings were studied. The results show that the as-sprayed coating was composed of the cubic phase, and the nano-sized monoclinic (M) phase was precipitated in the annealed coating. The presence of M phase effectively constrained the sintering of the coating due to its superior sintering-resistance. The Young's modulus kept at a nearly same level of ~78 GPa even after annealing, and the coating annealed for 6 h yielded a maximum value of hardness but revealed a declining tendency in the Vicker's hardness with prolonged sintering time. The thermal conductivity increased from 0.8-0.95 W m-1 K-1 at as-sprayed state to 1.6 W m-1 K-1 after annealing at 1400 °C for 96 h. The dual-phase coating is promising to serve at temperatures above 1400 °C due to its excellent thermal stability and mechanical properties.  相似文献   
43.
《Ceramics International》2020,46(8):12275-12281
Alumina and zirconia ceramic particles exhibit high hardness and excellent wear resistance at high temperature, and hence are used as ceramic reinforcement phases in some plasma sprayed coatings. In this study, the interface evolution of a zirconia/alumina eutectic ceramic and the phase transition of zirconia in a plasma-sprayed coating were investigated. Scanning electron microscopy and transmission electron microscopy combined with focused-ion beam and energy dispersive X-ray were used to analyze the microstructure and composition of the ceramic interface. The results showed that the eutectic ceramic particles consisted of alumina (outer) and columnar zirconia (inner) before and after the plasma spraying process. The inner zirconia part showed the martensitic transformation of t-type zirconia to stripe-like m-type zirconia. After the plasma spraying, the interface between alumina and zirconia changed significantly, which formed a new oxide layer. The phase transition mechanism in the ceramic particle and oxide layer formation mechanism at the alumina/zirconia interface were investigated.  相似文献   
44.
This study demonstrates the application of an improved Evolutionary optimization Algorithm (EA), titled Multi-Objective Complex Evolution Global Optimization Method with Principal Component Analysis and Crowding Distance Operator (MOSPD), for the hydropower reservoir operation of the Oroville–Thermalito Complex (OTC) – a crucial head-water resource for the California State Water Project (SWP). In the OTC's water-hydropower joint management study, the nonlinearity of hydropower generation and the reservoir's water elevation–storage relationship are explicitly formulated by polynomial function in order to closely match realistic situations and reduce linearization approximation errors. Comparison among different curve-fitting methods is conducted to understand the impact of the simplification of reservoir topography. In the optimization algorithm development, techniques of crowding distance and principal component analysis are implemented to improve the diversity and convergence of the optimal solutions towards and along the Pareto optimal set in the objective space. A comparative evaluation among the new algorithm MOSPD, the original Multi-Objective Complex Evolution Global Optimization Method (MOCOM), the Multi-Objective Differential Evolution method (MODE), the Multi-Objective Genetic Algorithm (MOGA), the Multi-Objective Simulated Annealing approach (MOSA), and the Multi-Objective Particle Swarm Optimization scheme (MOPSO) is conducted using the benchmark functions. The results show that best the MOSPD algorithm demonstrated the best and most consistent performance when compared with other algorithms on the test problems. The newly developed algorithm (MOSPD) is further applied to the OTC reservoir releasing problem during the snow melting season in 1998 (wet year), 2000 (normal year) and 2001 (dry year), in which the more spreading and converged non-dominated solutions of MOSPD provide decision makers with better operational alternatives for effectively and efficiently managing the OTC reservoirs in response to the different climates, especially drought, which has become more and more severe and frequent in California.  相似文献   
45.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   
46.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   
47.
Protection of Metals and Physical Chemistry of Surfaces - The Al2O3 powder was added as a filler to polyurea and the effect of doping amount on Shore hardness and wetting property were...  相似文献   
48.
49.
Traditional maximum power point tracking (MPPT) methods can hardly find global maximum power point (MPP) because output characteristics curve of photovoltaic (PV) array may have multi local maximum power points in irregular shadow, and thus easily fall into the local maximum power point. To address this drawback, Considering that sliding mode variable structure (SMVS) control strategy have such advantages as simple structure, fast response and strong robustness, and P&O method have the advantages of simple principle and convenient implementation, so a new algorithm combining SMVS control method and P&O method is proposed, besides, PI controller is applied to reduce system chattering caused by switching sliding surface. It is applied to MPPT control of PV array in irregular shadow to solve the problem of multi-peak optimization in partial shadow. In order to verity the rationality of the proposed algorithm, the experimental circuit is built, which achieves MPPT control by means of the proposed algorithm and P&O method. The experimental results show that compared with the traditional P&O algorithm, the proposed algorithm can fast track the global MPP, tracking speed increases by 60% and the relative error decreased by 20%. Moreover, the system becomes more stable near the MPP, the fluctuations of output power is greatly reduced, and thus make full use of solar energy.  相似文献   
50.
The need for feature selection and dimension reduction is felt as a fundamental step in security assessment of large power systems in which the number of features representing the state of power grids dramatically increases. These large amounts of attributes are not proper to be used for computational intelligence (CI) techniques as inputs, because it may lead to a time consuming procedure with insufficient results and they are not suitable for on-line purposes and updates.This paper proposes a combined method for an online voltage security assessment in which the dimension of the token data from phasor measurement units (PMUs) is reduced by principal component analysis (PCA). Then, the features with different stability indices are put into several categories and feature selection is done by correlation analysis in each category. These selected features are then given to decision trees (DTs) for classification and security assessment of power systems.The method is applied to 39-bus test system and a part of Iran power grid. It is seen from the results that the DTs with reduced data have simpler splitting rules, better performance in saving time, reasonable DT error and they are more suitable for constant updates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号