首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8067篇
  免费   998篇
  国内免费   278篇
电工技术   140篇
综合类   254篇
化学工业   2341篇
金属工艺   237篇
机械仪表   349篇
建筑科学   185篇
矿业工程   53篇
能源动力   153篇
轻工业   2586篇
水利工程   68篇
石油天然气   16篇
武器工业   3篇
无线电   412篇
一般工业技术   1151篇
冶金工业   56篇
原子能技术   49篇
自动化技术   1290篇
  2024年   32篇
  2023年   181篇
  2022年   278篇
  2021年   385篇
  2020年   412篇
  2019年   260篇
  2018年   222篇
  2017年   242篇
  2016年   247篇
  2015年   369篇
  2014年   551篇
  2013年   792篇
  2012年   897篇
  2011年   931篇
  2010年   603篇
  2009年   763篇
  2008年   410篇
  2007年   627篇
  2006年   522篇
  2005年   274篇
  2004年   57篇
  2003年   45篇
  2002年   51篇
  2001年   37篇
  2000年   40篇
  1999年   14篇
  1998年   9篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   1篇
  1992年   7篇
  1991年   1篇
  1990年   6篇
  1989年   11篇
  1988年   11篇
  1987年   21篇
  1986年   17篇
  1985年   2篇
排序方式: 共有9343条查询结果,搜索用时 15 毫秒
1.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
2.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
3.
Absorbents with “tree-like” structures, which were composed of hollow porous carbon fibers (HPCFs) acting as “trunk” structures, carbon nanotubes (CNTs) as “branch” structures and magnetite (Fe3O4) nanoparticles playing the role of “fruit” structures were prepared by chemical vapor deposition technique and chemical reaction. Microwave reflection loss, permittivity and permeability of Fe3O4–CNTs–HPCFs composites were investigated in the frequency range of 2–18 GHz. It was proven that prepared absorbents possessed the excellent electromagnetic wave absorbing performances. The bandwidth with a reflection loss less than −15 dB covers a wide frequency range from 10.2 to 18 GHz with the thickness of 1.5–3.0 mm, and the minimum reflection loss is −50.9 dB at 14.03 GHz with a 2.5 mm thick sample layer. Microwave absorbing mechanism of the Fe3O4–CNTs–HPCFs composites is concluded as dielectric polarization and the synergetic interactions exist between Fe3O4 and CNTs–HPCFs.  相似文献   
4.
5.
The visible light driven Bi2MoO6 photocatalyst doped with different contents of Ag nanoparticles was successfully synthesized by a combination of hydrothermal and sonochemical methods. The as-synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy (SEM and TEM) and UV–visible spectroscopy to investigate crystalline structure, morphology, composition and photocatalytic properties. XRD patterns and TEM images of the samples revealed pure phase orthorhombic Bi2MoO6 nanoplates without any detection of Ag dopant due to its low concentration and very tiny particle size. TEM images showed that Ag nanoparticles with the size of 10–15 nm were dispersed randomly on the surface of Bi2MoO6. The XPS analysis of Ag/Bi2MoO6 nanocomposites revealed the presence of additional metallic Ag. Photocatalytic activities of the Ag/Bi2MoO6 nanocomposites were evaluated by determining the degradation of rhodamine B (RhB) under visible light radiation. In this research, the 10 wt% Ag/Bi2MoO6 nanocomposites showed the best photocatalytic activity. The results suggest that the dispersion of Ag nanoparticles on the surface of Bi2MoO6 significantly enhances its photocatalytic activity.  相似文献   
6.
《Ceramics International》2021,47(22):31268-31276
The relationship between the tensile strength of corroded domestic second-generation (2ed-gen) SiC fibers at various temperatures for 500 h in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt and the typical microstructure was studied. Weibull theory was used to analyze the critical defects that caused the tensile fracture, and the microstructure of fibers before and after corrosion was characterized. It is concluded that the decrease of tensile strength after corrosion at 800 °C is caused by the surface injury of fibers, which led to the shift of critical defects from the internal defects of virgin fibers to surface defects. Moreover, corrosion at higher temperature accelerates the corrosion process and dissolve the surface O-contained layer thoroughly. This shifts the critical defects back to the internal defects and will be helpful for the recovery of tensile strength of corroded fibers at the higher temperature.  相似文献   
7.
《CIRP Annals》2020,69(1):33-36
The vast Carbon Fiber Reinforced Polymer (CFRP) waste accumulated is pressing for its recycling. A novel recycling approach, which integrated carbon fiber reclamation and composite additive manufacturing, is proposed to process the CFRP waste into three Dimensional (3D) parts. In the experiments, the CFRP waste was recycled by supercritical n-butanol to yield reclaimed Carbon Fibers (rCFs). The rCFs were ground by a ball mill, mixed with Poly-Ether-Ether-Ketone (PEEK) powder and then extruded to the composite filament. The filament was fed to the Fused Deposition Modeling (FDM) printer to fabricate 3D parts. Mechanical and electrical properties of the parts were investigated and compared with that of pure PEEK. The results illustrate that the additive manufacturing-based approach offers a potential strategy to reuse the CFRP waste and rapidly fabricate the rCF reinforced plastics with complex geometry and function.  相似文献   
8.
We present a straightforward method via sol-gel process using polyethylene glycol (PEG) as phase separation inducer to prepare zirconium carbide/silicon carbide (ZrC/SiC) porous monoliths. Organic/inorganic hybrid gels are prepared using zirconium oxychloride, furfuryl alcohol, and tetraethyl orthosilicate as major starting materials. In the presence of PEG, crack-free hybrid monoliths are obtained by drying the wet gels under ambient pressure, whereas in the absence of PEG, the wet gels break into pieces as expected. PEG plays a key role in maintaining the macroscopic shape of the monoliths. After ceramization at 1300–1500?°C, ZrC/SiC porous monoliths are obtained. SEM and mercury intrusion porosimetry data show that PEG also has strong influence on the microstructures of the monoliths. The compressive strengths of the ceramic monoliths are in the range of 0.3 to 0.7?MPa. And their compressive behavior starts to differ due to the changes in their microstructures, especially the pore structure.  相似文献   
9.
In this paper, polyborosilazane precursor was synthesied from HMDZ, HSiCl3, BCl3 and CH3NH2 using a multistep method. By controlling the storage conditions, parts of the polyborosilazane fibers were hydrolyzed. FT-IR, NMR, XRD, TEM and monofilament tensile strength test were employed to study the effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers. FT-IR and NMR results indicate that Si-N group in PBSZ reacts with H2O to form Si-O-Si group. After pyrolysis reaction at 1400℃, Si-O-Si group will finally transformed into highly ordered cristobalite and β-quartz, resulting in formation of the wrinkled surface of the obtained SiBN ceramic fiber. The strip-like defects on fiber surface, according to monofilament tensile strength test, had a significant effect on mechanical property of the obtained SiBN ceramic fiber and caused no increase in fiber tensile strength of hydrolytic polyborosilazane fiber before and after pyrolytic process.  相似文献   
10.
In this article, Fe‐Tetranitro phthalocyanine (Fe‐TNPc)/polyurethane (PU) blends were prepared by solution blending. The mechanical properties of the samples were studied by tensile tests. The results showed that the tensile strength and the elongation at break of the samples increased with increasing Fe‐TNPc content. The improved mechanical properties for the samples containing Fe‐TNPc was attributed to the increased microphase separation degree of PU, which was further investigated by dynamic mechanical analysis (DMA) and Fourier transform infrared analysis. The lower Tg of the soft segments and the higher Tg of the hard segments for the samples containing Fe‐TNPc indicated an increase of microphase separation degree of PU. The increased hydrogen bonded carbonyl groups in the samples with increasing Fe‐TNPc content also proved the conclusion. Quantitative evaluation of the interaction between Fe‐TNPc and PU was also investigated by analyzing the physical crosslinking density of the samples. The results indicated that the physical crosslinking density of the samples increased with increasing Fe‐TNPc content. The antibacterial properties of the samples were investigated. The results showed that the percentage bacterial inactivation toward S. aureus and E. coli of the samples were 98.9% and 90.9%, respectively, when Fe‐TNPc was added to 1%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41284.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号