首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9543篇
  免费   1370篇
  国内免费   494篇
电工技术   510篇
技术理论   1篇
综合类   726篇
化学工业   1309篇
金属工艺   1112篇
机械仪表   438篇
建筑科学   468篇
矿业工程   671篇
能源动力   735篇
轻工业   1288篇
水利工程   203篇
石油天然气   89篇
武器工业   66篇
无线电   552篇
一般工业技术   1033篇
冶金工业   910篇
原子能技术   34篇
自动化技术   1262篇
  2024年   63篇
  2023年   381篇
  2022年   620篇
  2021年   606篇
  2020年   685篇
  2019年   481篇
  2018年   394篇
  2017年   375篇
  2016年   421篇
  2015年   614篇
  2014年   814篇
  2013年   876篇
  2012年   1091篇
  2011年   981篇
  2010年   645篇
  2009年   660篇
  2008年   266篇
  2007年   485篇
  2006年   396篇
  2005年   140篇
  2004年   48篇
  2003年   46篇
  2002年   34篇
  2001年   40篇
  2000年   33篇
  1999年   40篇
  1998年   22篇
  1997年   7篇
  1996年   21篇
  1995年   8篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   3篇
  1988年   14篇
  1987年   22篇
  1986年   27篇
  1985年   8篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
燕麦为西藏自治区典型牧草之一,由于种植区地域辽阔,灌溉试验结果受限,西藏燕麦主要种植区的灌溉定额尚不明确。本文在西藏燕麦主要种植区内选取28个典型站点进行资料收集,遵循农业气候相似原则进行区域划分,基于水量平衡法揭示了西藏燕麦主要种植区灌溉定额的空间分布特征,并根据统计学原理分析了其影响因素。研究表明:燕麦主要种植区的灌溉定额呈由西藏中部至东部呈现先递增后递减的趋势,50%水文年下的燕麦灌溉定额在56~265 mm之间变化。降雨量是影响研究区内燕麦灌溉定额的主要因素(R2为0.515),ET0次之(R2为0.152);其它气象因素中,日照时数对研究区燕麦灌溉定额影响较大(R2为0.462),且呈正相关关系;相对湿度对燕麦灌溉定额影响较小。西藏燕麦主要种植区的灌溉定额及其空间分布可为西藏自治区灌溉用水管理提供支撑。  相似文献   
2.
Independent hydrogen production from petrochemical wastewater containing mono-ethylene glycol (MEG) via anaerobic sequencing batch reactor (ASBR) was extensively assessed under psychrophilic conditions (15–25 °C). A lab-scale ASBR was operated at pH of 5.50, and different organic loading rates (OLR) of 1.00, 1.67, 2.67, and 4.00 gCOD/L/d. The hydrogen yield (HY) progressed from 134.32 ± 10.79 to 189.09 ± 22.35 mL/gMEGinitial at increasing OLR from 1.00 to 4.00 gCOD/L/d. The maximum hydrogen content of 47.44 ± 3.60% was achieved at OLR of 4.0 gCOD/L/d, while methane content remained low (17.76 ± 1.27% at OLR of 1.0 gCOD/L/d). Kinetic studies using four different mathematical models were conducted to describe the ASBR performance. Furthermore, two batch-mode experiments were performed to optimize the nitrogen supplementation as a nutrient (C/N ratio), and assess the impact of salinity (as gNaCl/L) on hydrogen production. HY substantially dropped from 62.77 ± 4.09 to 6.02 ± 0.39 mL/gMEGinitial when C/N ratio was increased from 28.5 to 114.0. Besides, the results revealed that salinity up to 10.0 gNaCl/L has a relatively low inhibitory impact on hydrogen production. Eventually, the cost/benefit analysis showed that environmental and energy recovery revenues from ASBR were optimized at OLR of 4.0 gCOD/L/d (payback period of 7.13 yrs).  相似文献   
3.
4.
In this work, three dimensional (3D) NixCo1−xS2/graphene composite hydrogels with different Ni contents (denoted as NixCo1−xS2/GH (x = 0, 0.31, 0.56, 0.66, 1)) have been synthesized by a simple one-step hydrothermal method and utilized as the active materials of supercapacitors. The as-prepared samples present a 3D interconnected porous network with the pore sizes in the range of several to tens micrometers. Interestingly, the NixCo1−xS2 particles are uniformly located on the graphene network and the particle size is evolved from ∼50 nm to ∼1.5 μm with the increase of Ni content. The electrochemical measurements revealed that the specific capacitance, rate capability and cyclability of different NixCo1−xS2/GH electrodes are strongly affected by their different Ni content. Among these, the 3D Ni0.31Co0.69S2/GH composite has the highest specific capacitance of 1166 F/g at a current density of 1 A/g. Furthermore, a specific capacitance of 559 F/g can be still maintained at high current density of 20 A/g. After 1000 charge–discharge cycles at 5 A/g, the specific capacitance remains a high value of 755 F/g.  相似文献   
5.
High temperature erosion-oxidation behavior of Fe-based Nb or V containing multi-component alloys with Co addition is investigated at 1173 K. High temperature erosion tests and oxidation tests are conducted to determine both erosion and oxidation behaviors. Oxide scales are detected on the surfaces with 5V–10Nb and 5V–10Co showing superior erosion-oxidation resistance at 1173 K. The erosion rate is high in V-containing samples without Co due to the occurrence of vanadium oxide attack. Whilst, with increasing of Co content, the erosion rate is reduced, indicating the addition of Co is an effective counter-measure. In Nb-containing samples on the other hand, oxidation is successfully controlled by the formation of a composite oxide layer regardless of the presence of Co, thereby reducing the erosion losses.  相似文献   
6.
Water splitting is an effective way to produce hydrogen to solve the energy crisis problem, and inorganic metal compounds are widely used in electrocatalysis field due to efficient hydrogen evolution reaction (HER). Herein, we synthesize Ni2V2O7 dandelion microsphere from nickel nitrate and vanadium pentoxide by “one-step hydrothermal” way, which exhibits large specific surface area of 102.74 m2 g−1. The as-prepared Ni2V2O7 microsphere shows good electrocatalysis performances including OER overpotential of 358 mV and good stability, as well as HER overpotential of 195 mV. Furthermore, the Ni2V2O7 microsphere electrode is assembled to Ni2V2O7 microsphere//Ni2V2O7 microsphere system, showing the water splitting voltage of 1.50 V at 10 mA cm−2 by two-electrode method, which is much lower than those of commercial RuO2//Pt/C system and most of spinel oxides electrocatalysts. Our work opens up a new and facile avenue for fabricating inorganic microsphere electrocatalyst in hydrogen production field.  相似文献   
7.
《Ceramics International》2022,48(18):25933-25939
In order to gain more insights into the influence of rare earth elements on the melt structure of SiO2–CaO–Al2O3–MgO glass ceramics, Raman and X-ray photoelectron spectroscopy techniques were used to study the influence of La2O3 on the Si–O/Al–O tetrahedron structure within SiO2–CaO–Al2O3–MgO–quenched glass samples in this study. Results showed that some Raman peak shapes at low frequencies (200–840 cm?1) changed significantly after the addition of La2O3, compared to the high frequency (840–1200 cm?1) region that corresponds to the [SiO4] structure, suggesting that the depolymerization of the low-frequency T–O–T (T=Si or Al) structure was more prevalent with La3+ addition. Besides, the depolymerization extent of the Si–O/Al–O tetrahedral network varied when the melt composition altered. Most notably, depolymerization is the most significant at a low CaO/SiO2 ratio (0.25) and a high Al2O3 content (8%). Meanwhile, La3+ can promote the transformation of Si–O–Si and Al–O–Al bonds to the Si–O–Al ones, thereby forming a complex ionic cluster network interwoven with Si–O and Al–O tetrahedrons.  相似文献   
8.
As haze intensifies in China, controlling haze emission has become the country's top priority for environmental protection. Because haze moves across different regions, it is necessary to develop a data envelopment analysis (DEA) model underpinned by both competition and cooperation to evaluate the haze emission efficiency in different provinces. This study innovatively adopts the spatial econometrics to construct the co-opetition matrices of Chinese provinces, then builds the co-opetition DEA model to evaluate the haze emission efficiency of them, and finally uses the haze data of 2015 as an example to assess the applicability of the model. The results of the study include the following: First, compared with the traditional CCR (A. Charnes & W. W. Cooper & E. Rhodes) model, this study constructs the co-opetition DEA cross-efficiency model that integrates haze's feature of cross-border moving; thus, it is more in line with the reality of haze emission and movement. Second, compared with the efficiency value gained from the CCR model, the haze emission efficiency values for Tianjin and Guangdong, two decision-making units, register greater variance when using the DEA model. The reason might lie in that they have a different spatial transportation relationship with their surrounding provinces. Third, the haze emission efficiency of provinces, according to the evaluation based on the co-opetition DEA method, varies greatly: Those with high efficiency are mostly inland provinces with slow economic growth and adverse climatic conditions, whereas many of the provinces with low efficiency are located in the relatively prosperous East China. The specific co-opetition DEA model constructed in this study enriches the research on the DEA model, which can be applied to the emission efficiency evaluation of similar pollutants around the world and can contribute empirical support to the haze reducing efforts of the government with its empirical results.  相似文献   
9.
This article reported a series of g–C3N4–CNS (g-C3N4 and carbon nanosheets) composite carriers formed by the hydrothermal method, and then the ethylene glycol reduction method was used to anchor Pt nanoparticles on the g–C3N4–CNS carrier to form the Pt/g–C3N4–CNS catalysts. The electrochemical test for the electrocatalytic oxidation of methanol (MOR) shown that the Pt/20%g–C3N4–CNS catalyst has the best catalytic performance and stability. These Pt/g–C3N4–CNS catalysts were analyzed by TEM, XRD, XPS, and BET characterization. It is discovered that the amount of g-C3N4 greatly influenced the structure and chemical properties of Pt/CNS precursor. As the content of g-C3N4 increases, the content of pyridine nitrogen and pyrrole nitrogen also increases, and N species can enhance the interaction between Pt nanoparticles and CNS, promote Pt dispersion, and increase the specific surface area of the catalyst. Similarly, an excessive addition of g-C3N4 will cause a sharp decline in the conductivity of the catalyst, and then led to the decline of MOR activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号