首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
化学工业   5篇
能源动力   3篇
轻工业   1篇
水利工程   1篇
一般工业技术   3篇
  2020年   2篇
  2019年   1篇
  2013年   7篇
  2012年   1篇
  2010年   1篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
2.
Nitrogen (N) doped porous activated carbons (TGC-T) derived from tofu gel are prepared through a facile, economic and eco-friendly method. The as-prepared TGC-900 possesses high specific surface area (651.78 m2 g−1) and homogeneous doping N (Content of N: 5.52 at.%). Reasonably, TGC-900 exhibits excellent oxygen reduction reaction (ORR) activity, stability and methanol resistance in neutral, alkaline and acidic medium. Moreover, TGC-900 also shows outstanding ORR performance in the application of microbial fuel cell (MFC) with the highest output voltage (544 ± 6 mV) and maximum power density (977 ± 32 mW m−2). Inspiringly, four single-chamber air cathode MFCs (AC-MFCs) in series can drive a light-emitting diode (LED) to work is firstly reported which further provides a more intuitively method to evaluate the performance of generating electricity for MFCs. Thus, the high performance and cost-effective ORR catalyst TGC-900 is expected to apply in the field of fuel cells.  相似文献   
3.
Recently, fuel cells and metal-air batteries have attracted extensive attentions. Researching and developing non-noble metal catalyst with high electrocatalytic activity and low cost is one of the important challenges for these energy storage and conversion devices. In this study, phosphorus doped hierarchical porous carbon (P-HPC) has been firstly synthesized via a hard template method. The prepared PHPC possesses a unique porous structure which consists of micropores, mesopores and macropores simultaneously. The electrocatalytic activity of the PHPC toward ORR in KOH solution has been studied and compared with the ordinary structured phosphorus doped carbon (PC) and the commercial Pt/C by means of rotating ring-disk electrode (RRDE) technique. The prepared PHPC exhibits an excellent electrocatalytic performance toward ORR in terms of the electrocatalytic activity, the reaction kinetics, the durability and the methanol tolerance. And the high electrocatalytic activity and durability of PHPC could be attributed to the special hierarchical porous structure. This research demonstrates that the rational design of the microstructures for catalyst plays significant roles in improving the catalytic activity for the ORR.  相似文献   
4.
Microcosms were built up to simulate a pond system with polybrominated diphenyl ether (PBDE) contaminated sediment and bioorganisms. The microcosms were divided into groups A and B. In group A, both benthic invertebrates (tubificid worms) and carp (Cyprinu carpio) were added, while in group B, only fish were added. After exposure for 20 d, the fish were sampled (exposure I). A net was fixed in the microcosms, and new fish were added (exposure II). These fish were prohibited from contacting the sediment by the net, and the accumulation and depuration of PBDEs in the fish were investigated. Among 11 monitored PBDE congeners (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, BDE-206, BDE-207, BDE-208, and BDE-209), only 5 congeners (BDE-28, BDE-47, BDE-100, BDE-153, and BDE-154) were detected in the carp fillets and liver. BDE-99 and BDE-183 were not detected in the fish because of the efficient metabolic debromination in carp tissues. The uptake of PBDEs in exposure I was significantly higher/faster than that in exposure II, since the fish in exposure I had an opportunity to take in more of the highly contaminated particles. The uptake kinetics (k(s)) and elimination (k(e)) rate coefficients showed a general trend of decreasing with increasing log K(ow). No significant difference was observed in uptake/depuration kinetics between groups A and B, indicating that the tubificids' reworking does not affect the bioaccumulation of sediment-associated PBDEs in fish significantly. All the PBDE congeners, including nona- and deca-BDEs, were bioaccumulated in the tubificid worms. The PBDE concentrations in the worms were significantly higher than those in the fish, and the congener profile of the sevem major congeners (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, and BDE-183) was distinctly different from that of fish tissues. The biota-sediment accumulation factors in the worms ranged from 0.01 to 5.89 and declined with increasing bromination and log K(ow.).  相似文献   
5.
《Fuel》2003,82(15-17):2017-2023
It has been established previously [Anal. Commun. 33 (1996) 331; Analyst 123 (1998) 1519; Org. Geochem. 30 (1999) 881; Environ. Sci. Technol. 34 (2000) 4684] that, for thermal conversion regimes where volatiles survive to a significant degree (e.g. low and high temperature carbonisation, domestic combustion), the stable carbon isotopic signatures of polycyclic aromatic hydrocarbons (PAHs) are similar to those of the parent coals (ca. −25‰, cf. −23.5‰ for the coals). This information has been used to unambiguously identify coal-derived PAHs in contaminated land sites. Aromatic hydrocarbons in a number of samples analysed from a former foundry site at Mansfield displayed variable compositions with those containing predominately alkylated benzenes and naphthalenes having carbon stable isotopic ratios in the range of −28 to −30‰, typical of transport fuels. The aliphatic hydrocarbon distributions confirmed the petroleum origin and indicated that the oil had also been biodegraded. Less negative (enriched in 13C, −25 to −26‰) isotopic profiles were obtained for the fractions rich in 3–6 ring parent PAHs, indicating a significant input from coal utilisation. Separating the aromatic by ring size enabled the coal-derived 3–6 ring PAHs to be identified in samples where petroleum-derived alkylated benzenes and naphthalenes dominated. A similar situation to this with only a small input from coal-derived PAHs was found for a soil heavily contaminated with diesel fuel from the Motherwell area. Carbon stable isotopic data taken in conjunction with PAH distributions indicate that the coal tar contaminating an area of Glasgow Green, which was believed to be dumped during the Second World War and was unearthed recently, probably originated from a high temperature coking plant as opposed to a gas works, as indicated by the isotopic signatures of the distributions of PAHs.  相似文献   
6.
利用两步电化学阳极氧化法制备了TiO2纳米管(TNT),并比较了其与一步阳极氧化法制备的TNT形貌特征和光电催化活性。结果表明:两步氧化法制得的TNT较一步阳极氧化法制得的TNT形貌有较大的差异,两步氧化后TNT平均管长和管径略有增加,分别达到7.67μm和72.12 nm,而管壁厚度则减少到16.36 nm,这导致长径比从59.73显著增加到104.83。相应地,其光-氢转化效率也从0.14%显著增加到0.36%。而目标污染物乙二醇的存在进一步提升了TNT的光电催化降解污染物同时产氢的活性。因此,两步阳极氧化法是一种简单有效改善TNT结构特征和光电催化性能的有效方法,在光电催化降解污水中的有机污染物同时产氢方面有应用前景。  相似文献   
7.
8.
电芬顿技术的研究进展   总被引:2,自引:0,他引:2  
周蕾  周明华 《水处理技术》2013,39(10):6-11,17
电芬顿技术是近年来在水处理技术中发展起来的一种新型电化学高级氧化技术,由于其可以在原位产生芬顿试剂,因此受到越来越多的关注。介绍了电芬顿法的基本原理,并从阴极材料和金属催化剂两方面论述了电芬顿技术的研究进展,并对今后的发展进行了展望。  相似文献   
9.
Due to increasing human requirements, newer chemical species are being observed in the effluent streams with higher loadings such that efficacy of conventional treatment techniques is decreased and a combination of advanced oxidation processes is implemented for enhanced treatment ability and better energy efficiency. In the present work, the efficacy of combination of sonochemistry and Fenton chemistry has been investigated for wastewater treatment considering p-nitrophenol as model pollutant at pilot scale operation. Degradation of p-nitrophenol has been investigated under various operating conditions based on the use of ultrasound, Fenton process, ultrasound and H2O2, ultrasound and Fe, ultrasound and FeSO4, ultrasound and conventional Fenton process and ultrasound and advanced Fenton process. Two different initial concentrations of 0.5 and 1% of p-nitrophenol have been used for the experiments. In conventional Fenton and advanced Fenton process, two loadings of FeSO4 and Fe powder 0.5 and 1 g/l and three ratios of FeSO4:H2O2 and Fe:H2O2 (1:5, 1:7.5 and 1:10) were investigated respectively. In all the systems investigated, maximum extent of degradation (66.4%) was observed for 0.5% p-nitrophenol concentration (w/v) using a combination of ultrasound and advanced Fenton process. The novelty of the work is in terms of investigating the efficacies of combined advanced oxidation processes based on the use of cavitation and Fenton chemistry at pilot scale operation and tries to establish the missing design related information for large scale operation of wastewater treatment.  相似文献   
10.
Cathode oxygen reduction reaction (ORR) performance is crucial for power generation of microbial fuel cells (MFCs). The current study provides a novel strategy to prepare Fe/N-doped carbon (Fe/N/C) catalyst for MFCs cathode through high temperature pyrolyzing of biomass capsuling melamine resin polymer. The obtained Fe/N/C can effectively enhance activity, selectivity and stability toward 4 e ORR in pH neutral solution. Single chamber MFC with Fe/N/C air cathode produces maximum power density of 1166 mW m−2, which is 140% higher than AC cathode. The improved performance of Fe/N/C can be attributed to the involvement of nitrogen and iron species. The excellent stability can be attributed to the preferential structure of the catalyst. The moderate porosity of the catalyst facilitates mass transfer of oxygen and protons and prevents water flooding of triple-phase boundary where ORR occurs. The biomass particles encapsulated in the catalyst act as skeletons, which prevents catalyst collapse and agglomeration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号