首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
化学工业   8篇
建筑科学   4篇
矿业工程   2篇
能源动力   4篇
水利工程   6篇
一般工业技术   6篇
  2020年   3篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2007年   1篇
  2006年   1篇
  2001年   2篇
  1995年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有30条查询结果,搜索用时 187 毫秒
1.
《Materials Letters》2006,60(25-26):3088-3090
In this paper, we doped p-type conductivity dehydrated nanotubed titanic acid (DNTA) into insulator polymer poly(methyl methacrylate) (PMMA). The electric properties of this nanocomposite were investigated. The photoluminescence efficiency of fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) in PMMA matrix was enhanced by doping with DNTA. Moreover, screen effect by DNTA with high permittivity caused the emission from DCJTB to be blue-shifted.  相似文献   
2.
《Materials Research Bulletin》2013,48(11):4673-4678
In this paper, core/sheath TiO2/SiO2 nanofibers with tunable sheath thickness were directly fabricated via a facile co-electrospinning technique with subsequent calcination at 500 °C. The morphologies and structures of core/sheath TiO2/SiO2 nanofibers were characterized by TGA, FESEM, TEM, FTIR, XPS and BET. It was found that the 1D core/sheath nanofibers are made up of anatase–rutile TiO2 core and amorphous SiO2 sheath. The influences of SiO2 sheath and its thickness on the photoreactivity were evaluated by observing photo-degradation of methylene blue aqueous solution under the irradiation of UV light. Compared with pure TiO2 nanofibers, the core/sheath TiO2/SiO2 nanofibers performed a better catalytic performance. That was attributed to not only efficient separation of hole–electron pairs resulting from the formation of heterojunction but also larger surface area and surface silanol group which will be useful to provide higher capacity for oxygen adsorption to generate more hydroxyl radicals. And the optimized core/sheath TiO2/SiO2 nanofibers with a sheath thickness of 37 nm exhibited the best photocatalytic performance.  相似文献   
3.
4.
The plot-culture experiments were conducted for examining the feasibility of Pharbitis nil L. and its microbial community to remedy petroleum contaminated soils. The petroleum contaminated soil, containing 10% (w/w) of the total petroleum hydrocarbons (TPHs), was collected from the Shengli Oil Field, Dongying City, Shandong Province, China. The collected soil was applied and diluted to a series of petroleum contaminated soils (0.5%, 1.0%, 2.0% and 4.0%). Root length, microbial populations and numbers in the rhizosphere were also measured in this work. The results showed that there was significantly (p < 0.05) greater degradation rate of TPHs in vegetated treatments, up to 27.63-67.42%, compared with the unvegetated controls (only 10.20-35.61%), after a 127-day incubation. Although various fractions of TPHs had an insignificant concentration difference due to the presence of the remediation plants, there was a much higher removal of saturated hydrocarbon compared with other components. The biomass of P. nil L. did not decrease significantly when the concentration of petroleum hydrocarbons in soil was ≤ 2.0%. The trends of microbial populations and numbers in the rhizosphere were similar to the biomass changes, with the exception that fungi at 0.5% petroleum contaminated soil had the largest microbial populations and numbers.  相似文献   
5.
A novel degradation system, combined with photon-efficient thin-film photocatalysis, conventional bulk-phase photocatalysis and photocarrier-efficient electrocatalysis (TBPE), was developed on a vertically ordered one-dimensional (1D) TiO2 nanotube (TNT)/Ti electrode for the purification of organics. The TBPE system possessed excellent optical, electrochemical, photoelectrochemical and photoelectrocatalytic properties as well as a high mass-transfer coefficient and interfacial activity. The combined degradation of methyl orange (MO) was optimized by varying the rotation angular velocity, applied bias and substrate concentration, and a photoelectrochemical synergetic effect of 62.2% was observed under the optimized conditions for TBPE compared to the individual electrocatalytic (EC) and photocatalytic (PC) systems. To explore the mechanisms, the combined thin-film degradation system of photon-efficient thin-film photocatalysis with photocarrier-efficient electrocatalysis (TPE), and the combined bulk-phase degradation system of conventional bulk-phase photocatalysis with photocarrier-efficient electrocatalysis (BPE), were comparatively estimated. A dramatic increase of 29.4-74.4% was observed in the MO removal efficiency via the thin-film TPE system compared to the bulk-phase BPE system. The results indicated that in the proposed TBPE system on the 1D TNT electrode, the predominant degradation occurred via the TPE system due to its excellent UV utilization efficiency and resultant interfacial photoactivity.  相似文献   
6.
《Minerals Engineering》2007,20(8):782-792
High biomass hold-up and high iron oxidation rates of a biological ferric sulphate generating fluidized-bed reactor (FBR) requires a carrier material with high specific surface area, high porosity and inertness. In this work, the effect of activated carbon (AC), diatomaceous earth (Celite) and Al2O3 (Compalox) carrier materials on the ferric sulphate generation in FBRs were studied. Compalox dissolved during the experiments and formed an unfluidizable aggregate, and was therefore rejected. The slow dissolution of Celite resulted in a light, fine-grained, layer on top of the fluidized bed that had to be changed into fresh Celite. AC resisted well the friction caused by fluidization. The iron oxidation in the continuous-flow FBRs became limited by oxygen supply already at loading rates of 2.5 kg Fe2+ m−3 h−1. Iron oxidation rates of 27.6 and 25.7 kg m−3 h−1 were obtained in batch FBR experiments with AC and Celite, respectively.Biomass accumulation of 6.2 × 1010, 2.4 × 1010 and 8.0 × 109 cells per g of carrier was detected on Celite, AC and Compalox, respectively. The bacterial community structures on the carrier materials were revealed by Polymerase Chain Reaction and Denaturating Gradient Gel Electrophoresis (PCR-DGGE) followed by partial sequencing of the 16S rRNA gene. Two bacterial strains, Leptospirillum ferriphilum and a strain similar to a strain unofficially named “Ferrimicrobium acidiphilum”, were detected. Examination of the carrier material surfaces with scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) revealed that all carrier materials were covered with jarosite precipitates and that the bacteria were mainly retained on the jarosite covered areas. In conclusion, AC was the most promising carrier material for a large-scale biological ferric sulphate generating FBR based on its availability, durability and the achieved high iron oxidation rates.  相似文献   
7.
臭氧氧化过程中产生的溴酸盐的问题已经成为目前臭氧大规模应用于饮用水中的最大制约因素。活性炭去除法是国内外最常用的去除溴酸盐的方法,且由于活性炭常作为臭氧氧化工艺必备的联用工艺,容易实现生产应用,且不需要增加额外的投资,引起了研究者的极大关注。本文全面阐述了关于活性炭/生物活性炭对溴酸盐的去除效能、去除机理及影响因素的研究进展。针对活性炭去除饮用水中溴酸盐的研究现状,提出了今后研究的主要方向和亟需解决的问题。  相似文献   
8.
A novel two-stage multi-criteria decision making (MCDM) method is proposed with the aim to select the most sustainable hydrogen production technology (HPT) by considering the preference information on both attributes and alternatives. In the first stage of the method, the initial sustainability ranking of the alternative HPTs was achieved by using the FBWM (Fuzzy Best-Worst Method) to determine the weights of the criteria and the fuzzy TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) method to prioritize the sustainability of alternative HPTs. While, in the second stage, a novel Preference Ranking Linear Programming Method (PRLPM) was used to acquire the final sustainability ranking according to the alternative preference information by following the principle of the outranking method. The proposed method was illustrated by a case study with 8 HTPs, demonstrating that the developed two-stage MCDM method can reflect the alternative preference of the decision-maker more accurately for selecting the most preferred alternative among various HTPs.  相似文献   
9.
10.
Dissolved organic matter (DOM) extracted from sediment samples in Lake Baiyangdian was investigated using UV -Vis absorption and fluorescence spectroscopy. Two parameters, the ratios of absorbance and dissolved organic carbon at 254° nm (SUVA254) and the integral area from 240° nm to 400° nm (A240 -400), were used to assess the molecular weight and aromaticity of DOM. The surface sediments showed a relatively low aromaticity of DOM due to the impact of environmental pollution. Synchronous fluorescence spectra showed an extremely high fraction of the protein-like region (PLR). Parallel factor analysis (PARAFAC) of excitation -emission matrix spectra revealed four fluorescent components occurring in sediment DOM: two humic-like (C1 and C2) components and two protein-like (C3 and C4) components. The PARAFAC-PCA displayed three PCA factors (factors 1, 2 and 3) which accounted for 48.250%, 25.927% and 25.391%, respectively, of the variance in fluorescent component. The humic-like components 1 and 2 concurrently showed positive factor 1 loadings. Factor 2 was mainly explained by the tryptophan-like component C3. A non-humic component 4, having a low factor loading in the other two factors, showed an extremely high factor 3 loading. The EEM -PARAFAC-PCA showed varying contributions of terrestrial versus autochthonous DOM sources in lake sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号