首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
  国内免费   1篇
化学工业   10篇
金属工艺   1篇
机械仪表   2篇
能源动力   23篇
轻工业   1篇
石油天然气   2篇
无线电   4篇
一般工业技术   11篇
冶金工业   1篇
自动化技术   3篇
  2023年   5篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
1.
Specialized varieties of sugar beets (Beta vulgaris L.) may be an eligible feedstock for advanced biofuel designation under the USA Energy Independence and Security Act of 2007. These non-food industrial beets could double ethanol production per hectare compared to alternative feedstocks. A mixed-integer mathematical programming model was constructed to determine the breakeven price of ethanol produced from industrial beets, and to determine the optimal size and biorefinery location. The model, based on limited field data, evaluates Southern Plains beet production in a 3-year crop rotation, and beet harvest, transportation, and processing. The optimal strategy depends critically on several assumptions including a just-in-time harvest and delivery system that remains to be tested in field trials. Based on a wet beet to ethanol conversion rate of 110 dm3 Mg−1 and capital cost of 128 M$ for a 152 dam3 y−1 biorefinery, the estimated breakeven ethanol price was 507 $ m−3. The average breakeven production cost of corn (Zea mays L.) grain ethanol ranged from 430 to 552 $ m−3 based on average net corn feedstock cost of 254 and 396 $ m−3 in 2014 and 2013, respectively. The estimated net beet ethanol delivered cost of 207 $ m−3 was lower than the average net corn feedstock cost of 254–396$ m−3 in 2013 and 2014. If for a mature industry, the cost to process beets was equal to the cost to process corn, the beet breakeven ethanol price would be $387 m-3 (587 $ m−3 gasoline equivalent).  相似文献   
2.
《Fuel》2006,85(12-13):1935-1943
This paper presents modeling of a coal gasification reaction, and prediction of gasification performance for an entrained flow coal gasifier. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. The coal gasification model suggested in this paper is composed of a pyrolysis model, char gasification model, and gas phase reaction model. A numerical simulation with the coal gasification model is performed on the CRIEPI 2 tons/day (T/D) research scale coal gasifier. Influence of the air ratio on gasification performance, such as a per pass carbon conversion efficiency, amount of product char, a heating value of the product gas, and cold gas efficiency is presented with regard to the 2 T/D gasifier. Gas temperature distribution and product gas composition are also presented. A comparison between the calculation and experimental data shows that most features of the gasification performance were identified accurately by the numerical simulation, confirming the validity of the current model.  相似文献   
3.
Nowadays, tandem structures have become a valuable competitor to conventional silicon solar cells, especially for perovskite over silicon, as metal halides surpassed Si with tunable bandgaps, high absorption coefficient, low deposition, and preparation costs. This led to a remarkable enhancement in the overall efficiency of the whole cell and its characteristics. Consequently, this expands the usage of photovoltaic technology in various fields of applications not only under conventional light source spectrum in outdoor areas, i.e., AM1.5G, but also under artificial light sources found indoors with broadband intensity values, such as Internet of things (IoTs) applications to name a few. We introduce a numerical model to analyze perovskite/Si tandem cells (PSSTCs) using both crystalline silicon (c-Si) and hydrogenated amorphous silicon (a-Si:H) experimentally validated as base cells. All proposed layers have been studied with J-V characteristics and energy band diagrams under AM1.5G by using SCAPS-1D software version 3.7.7. Thereupon, the proposed architectures were tested under various artificial lighting spectra. The proposed structures of Li4Ti5O12/CsPbCl3/MAPbBr3/CH3NH3PbI3/Si recorded a maximum power conversion efficiency (PCE) of 25.25% for c-Si and 17.02% for a-Si:H, with nearly 7% enhancement concerning the Si bare cell in both cases.  相似文献   
4.
Drag type wind turbines have strong potential in small and medium power applications due to their simple design. However, a major disadvantage of this design is the noticeable low conversion efficiency. Therefore, more research is required to improve the efficiency of this design. The present work introduces a novel design of a three-rotor Savonius turbine with rotors arranged in a triangular pattern. The performance of the new design is assessed by computational modeling of the flow around the three rotors. The 2D computational model is firstly applied to investigate the performance of a single rotor design to validate the model by comparison with experimental measurements. The model introduced an acceptable accuracy compared to the experimental measurements. The performance of the new design is then investigated using the same model. The results indicated that the new design performance has higher power coefficient compared with single rotor design. The peak power coefficient of the three rotor turbine is 44% higher than that of the single rotor design (relative increase). The improved performance is attributed to the favorable interaction between the rotors which accelerates the flow approaching the downstream rotors and generates higher turning moment in the direction of rotation of each rotor.  相似文献   
5.

For the carbon-based glass fabrication/manufacture process, different amounts of pure graphite powder were added up to 100 wt.% of sodium tetraborate oxide (the weight of one mole of the sodium tetraborate is 381.372 g/mol) and then melted at 950 °C for 2 h before fast quenching in the air at RT. The resulted solids were examined by the XRD and SEM techniques, which confirmed the amorphous natures for studied samples. FTIR spectroscopy showed that some C-atoms are shared in the glass network as C–O and CO2. In contrast, the UV–Vis showed that the increase in the graphite contents/impurities causes a red shift in the value of the optical edge and the value of Fermi energy. Also, the increase of the graphite impurities causes a decrease in the bandgap values of both direct and indirect electronic transitions. Both the values of Urbach energy and the metallization indicated an increase in the crystallinity degree as the graphite content increase. A graphite-based glass is a promising material for wide-scale applications.

  相似文献   
6.
Environmental and medium parameters estimation is an essential step in Bioprocess engineering. In the present study, artificial neural network (ANN) was employed in estimation of biosurfactants yield from bacterial strain Klebseilla sp. FKOD36, surface tension reduction as well emulsification index. The data obtained from experimental design were used in modelling and optimization of ANN method. Temperature, pH value, incubation period, carbon, nitrogen and hydrocarbon sources were used as input of ANN model independently in the prediction of biosurfactants yield, surface tension reduction and emulsification index. Using the optimized values of critical input elements of ANN, the experimental values of biosurfactant yield, emulsification index and surface tension showed close agreement with the model estimate. The most efficient ANN model assessment was 0.030 g/l for actual value 0.038 g/l of biosurfactant yield, 31.67% for actual value 31.68% of emulsification index, and 21.6 dyne/cm for actual value 21.5 dyne/cm of surface tension respectively.  相似文献   
7.
Heat exchanger network (HEN) retrofitting is more important and challenging than HEN synthesis since it involves modifying existing network for improved energy efficiency. Additional factors to be considered include spatial constraints, relocation and re-piping costs, reassignment and effective use of existing heat exchanger areas. The previous studies using stochastic global optimization algorithms are mainly focused on two-level approach: the first level uses a stochastic algorithm for optimizing structure, and the second level uses either a stochastic or a deterministic algorithm for optimizing continuous variables. In this study, we propose and test one-step approach where a stochastic global optimization method, namely, integrated differential evolution (IDE), handles both discrete and continuous variables together. Thus, HEN structure and retrofitting model parameters are simultaneously optimized by IDE, which avoids the algorithm trapping at a local optimum and also improves the computational efficiency. Results on HEN applications show that the proposed approach gives better solutions.  相似文献   
8.
In this work the unsteady non-Newtonian blood flow and mass transfer in symmetric and non-symmetric stenotic arteries are numerically simulated considering the fluid-structure interaction (FSI) using the code ADINA. Blood with hyperviscosity syndrome is considered and hyperelastic Mooney–Rivlin model is used for the compliant arterial wall. The inlet boundary condition of imposed velocity or pressure is critical to obtain realistic hemodynamic results in stenotic arteries. The FSI affects significantly the hemodynamics on the stenotic arteries models, the arteries are considerably dilated and compressed due the stenosis. The stenosis severity and geometry have important influence on recirculation length, and distribution of concentration of macromolecules, such as low density lipoproteins (LDL).  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号