首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99533篇
  免费   2243篇
  国内免费   228篇
电工技术   1006篇
综合类   87篇
化学工业   17502篇
金属工艺   4382篇
机械仪表   2507篇
建筑科学   3063篇
矿业工程   417篇
能源动力   6496篇
轻工业   6524篇
水利工程   552篇
石油天然气   549篇
武器工业   3篇
无线电   7666篇
一般工业技术   18711篇
冶金工业   11282篇
原子能技术   2128篇
自动化技术   19129篇
  2023年   804篇
  2022年   588篇
  2021年   1297篇
  2020年   1765篇
  2019年   1594篇
  2018年   1864篇
  2017年   3493篇
  2016年   3685篇
  2015年   3193篇
  2014年   4539篇
  2013年   5845篇
  2012年   4004篇
  2011年   5505篇
  2010年   4603篇
  2009年   5147篇
  2008年   3705篇
  2007年   4350篇
  2006年   4069篇
  2005年   3236篇
  2004年   2490篇
  2003年   2645篇
  2002年   2620篇
  2001年   2148篇
  2000年   1835篇
  1999年   2342篇
  1998年   5138篇
  1997年   3183篇
  1996年   2317篇
  1995年   1480篇
  1994年   1257篇
  1993年   1243篇
  1992年   716篇
  1991年   685篇
  1990年   597篇
  1989年   501篇
  1988年   663篇
  1987年   291篇
  1986年   304篇
  1985年   601篇
  1984年   646篇
  1983年   476篇
  1982年   615篇
  1981年   571篇
  1980年   534篇
  1979年   500篇
  1978年   383篇
  1977年   340篇
  1976年   357篇
  1975年   263篇
  1973年   258篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
61.
62.
In recent years, many tidal turbine projects have been developed using composites blades. Tidal turbine blades are subject to ocean forces and sea water aggressions, and the reliability of these components is crucial to the profitability of ocean energy recovery systems. The majority of tidal turbine developers have preferred carbon/epoxy blades, so there is a need to understand how prolonged immersion in the ocean affects these composites. In this study the long term behaviour of different carbon/epoxy composites has been studied using accelerated ageing tests. A significant reduction of composite strengths has been observed after saturation of water in the material. For longer immersions only small further changes in these properties occur. No significant changes have been observed for moduli nor for composite toughness. The effect of sea water ageing on damage thresholds and kinetics has been studied and modelled. After saturation, the damage threshold is modified while kinetics of damage development remain the same.  相似文献   
63.
Possessing unique designs and properties absent in conventional materials, nanocomposites have made a remarkable imprint in science and technology. This is particularly true regarding the polymer matrix composites when they are further reinforced with nanoparticles. In this study, the effects of different weight percentages (0, 0.1, 0.2, 0.3, 0.4, and 0.5) of surface-modified graphene nanoplatelets (GNPs) on the microhardness and wear properties of basalt fibers/epoxy composites were investigated. The GNPs were surface modified by silane, and the composites were made by the hand lay-up method. The wear tests were conducted under two different loads of 20 and 40 N. The best wear properties were achieved at 0.3 wt % GNPs as a result of the GNPs' self-lubrication property and the formation of a stable transfer/lubricating film at the pin and disk interface. Moreover, the friction coefficient was lower at the higher normal load of 40 N. The microscopic studies by FESEM and SEM showed that the presence of GNPs up to 0.3 wt % led to the stability of the transfer/lubricating film by enhancing the adhesion of the basalt fibers to the epoxy resin. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47986.  相似文献   
64.
The need to reduce PEMFC systems cost as well as to increase their durability is crucial for their integration in various applications and especially for transport applications. A new simplified architecture of the anode circuit called Alternating Fuel Feeding (AFF) offers to reduce the development costs. Requiring a new stack concept, it combines the simplicity of Dead-End Anode (DEA) with the operation advantages of the hydrogen recirculation. The three architectures (DEA, recirculation and AFF) are compared in terms of performance on a 5-kW test bench in automotive conditions, through a sensitivity analysis. A gain of 17% on the system efficiency is observed when switching from DEA to AFF. Moreover, similar performances are obtained both for AFF and for recirculation after an accurate optimization of the AFF tuning parameters. Based on DoE data, a gain of 25% on the weight of the anodic line has been identified compared to pulsed ejector architecture and 43% with the classic recirculation architecture with blower only (Miraï).  相似文献   
65.
《Ceramics International》2020,46(11):19084-19091
In this work, a holmium oxide (Ho2O3/CNT) photocatalysts were successfully synthesized through a MOF assisted route for the first time. The effects of the morphology and purity on the photocatalytic behavior of the products, were investigated by determining various physicochemical properties. The Ho2O3/CNT nanocomposite was systematically analyzed by powder X-ray diffraction (P-XRD), transmission electron microscopy (TEM), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies. The Ho2O3 derived from a MOF assisted synthetic route using Ho(NO3)3·5H2O and terephthalic acid with a 1:1 M ratio at a temperature of 750 °C for 3 h prove the most advantageous, 98% degradation of 20 mg/L aqueous tetracycline pollutant was observed within 60 min. The elevated photocatalytic activity was mainly attributable to the unique synthetic route, improved crystallinity, wide UV-light absorption rate and excellent adsorption capabilities of CNT, as well as enhanced oxygen deficiency. The photocatalytic results confirm that the Ho2O3/CNT nanocomposite is an efficient photocatalyst for the degradation of toxic tetracycline pollutant and is thus suitable for use in environmental remediation.  相似文献   
66.
Thermal barrier coatings (TBCs) play a pivotal role in protecting the hot structures of modern turbine engines in aerospace as well as utility applications. To meet the increasing efficiency of gas turbine technology, worldwide research is focused on designing new architecture of TBCs. These TBCs are mainly fabricated by atmospheric plasma spraying (APS) as it is more economical over the electron beam physical vapor deposition (EB-PVD) technology. Notably, bi-layered, multi-layered and functionally graded TBC structures are recognized as favorable designs to obtain adequate coating performance and durability. In this regard, an attempt has been made in this article to highlight the structure, characteristics, limitations and future prospects of bi-layered, multi-layered and functionally graded TBC systems fabricated using plasma spraying and its allied techniques like suspension plasma spray (SPS), solution precursor plasma spray (SPPS) and plasma spray –physical vapor deposition (PS-PVD).  相似文献   
67.
Crack initiation and propagation in three braided SiC/SiC composite tubes with different braiding angles are investigated by in situ tensile tests with synchrotron micro-computed tomography. Crack networks are precisely detected after an image subtraction procedure based on Digital Volume Correlation. FFT based simulations are performed on the full-resolution 3D images to assess elastic stress/strain fields. Quantitative measurements of the crack geometries are performed using a novel method based on grey levels. The results show that braiding angle has no obvious effect on the location of crack onsets (initiation always occurs at tow interfaces), whereas it significantly affects the paths of crack propagation. This work provides an explicit demonstration of the crack propagation scenarios with respect to the mesoscopic fibre architectures.  相似文献   
68.
In the past decade, there have been great advances in the controllable growth of two-dimensional (2D) graphene sheets. However, the preparation of 3D structured graphene such as graphene coatings on arbitrary-shaped micro/nano materials still remains a formidable challenge. Herein, we have proposed a general strategy for the in situ growth of 3D graphene coatings on the micro/nano particles with arbitrary shapes. Inspired by the CVD growth mechanism of 2D graphene sheets on the bulk metal substrates, we have in situ constructed a nanometer-thick catalytic interface on the micro/nano particle surface by introducing a trace amount of transition metal salts and solid carbon sources with strictly-controlled content and ratio. Growth of 3D graphene coatings is accomplished through a solid-state reaction. Under the catalysis of the in situ formed catalytic interface consisting of highly-ordered metal nanoislands, the nano-thick amorphous carbon layer which arousing from the pyrolysis of carbon sources can be effectively transformed into a continuous and uniform graphene coating throughout the material surface based on a “dissolution–precipitation” mechanism. 3D graphene coatings have been successfully grown on lithium iron phosphate, silver, copper and silicon particles. The growth mechanism of the 3D graphene coatings has been studied in detail and a growth model is also proposed.  相似文献   
69.
While creativity is essential for developing students’ broad expertise in Science, Technology, Engineering, and Math (STEM) fields, many students struggle with various aspects of being creative. Digital technologies have the unique opportunity to support the creative process by (1) recognizing elements of students’ creativity, such as when creativity is lacking (modeling step), and (2) providing tailored scaffolding based on that information (intervention step). However, to date little work exists on either of these aspects. Here, we focus on the modeling step. Specifically, we explore the utility of various sensing devices, including an eye tracker, a skin conductance bracelet, and an EEG sensor, for modeling creativity during an educational activity, namely geometry proof generation. We found reliable differences in sensor features characterizing low vs. high creativity students. We then applied machine learning to build classifiers that achieved good accuracy in distinguishing these two student groups, providing evidence that sensor features are valuable for modeling creativity.  相似文献   
70.
Polymers play an important role in the advancement of materials for use in cutting-edge applications. A direct consequence of an increased demand for more sophisticated materials has been a drive toward developing polymers that exhibit a higher level of structural control, especially in terms of the number and type of functionalities provided within the polymer framework. A family of polymers that meets such a challenge is based on the readily available AB2 monomer 2,2-bismethylolpropionic acid (bis-MPA) building block. Due to the ease with which the monomers can be synthesized, an array of multifunctional polymers have been produced including monodisperse dendrimers and dendrons and well-defined linear polymers as well as linear-dendritic hybridizations. This review outlines the evolution of the synthetic strategies for developing novel polymeric architectures based on bis-MPA and their assessment in both solution and substrate-based innovative applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号