首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
  国内免费   1篇
化学工业   5篇
金属工艺   6篇
能源动力   15篇
水利工程   1篇
无线电   4篇
一般工业技术   17篇
原子能技术   4篇
自动化技术   1篇
  2023年   3篇
  2021年   4篇
  2020年   7篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2015年   5篇
  2014年   3篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有53条查询结果,搜索用时 0 毫秒
51.
Mg(BH4)2 has been considered as one of the promising light metal complex hydrides due to its high hydrogen capacity and low cost. But its higher thermal stability (dehydrogenation at above 300 °C) needs to be improved for the practical application. In this study, the aluminum hydride AlH3 was introduced into complex borohydride Mg(BH4)2 to synthesize a new Mg(BH4)2AlH3 composite by ball milling method. It is found that the active Al1 formed from the self-decomposition of AlH3 can effectively improve the dehydrogenation properties of Mg(BH4)2, the Mg(BH4)2AlH3 composite starts to release hydrogen at 130.8 °C with a total hydrogen capacity of 11.9 wt.%. The dehydrogenated products of the composite is composed of Mg2Al3 and B at 350 °C, resulting in the improved hydrogen desorption properties of Mg(BH4)2AlH3 composite. The Mg2Al3 and B products would be further transformed into MgAlB4 and Al at 500 °C. Moreover, the Mg2Al3 and B dehydrogenated products show better reversible hydrogen storage property than that of the MgAlB4 and Al products. This research shows a way to alter hydrogen de/hydrogenation route and reversibility of Mg(BH4)2 complex hydride by compositing with AlH3 and controlling the dehydrogenation temperature.  相似文献   
52.
Disordered crystallization and poor phase stability of mixed halide perovskite films are still the main factors that compromise the performance of inverted wide bandgap (WBG; 1.77 eV) perovskite solar cells (PSCs). Great difficulties are evidenced due to the very different crystallization rates between I- and Br-based perovskite components through DMSO-alone assisted anti-solvent process. Here, a zwitterionic additive strategy is reported for finely regulating the crystal growth of Cs0.2FA0.8Pb(I0.6Br0.4)3, thereby obtaining high-performance PSCs. The aminoethanesulfonic acid (AESA) is introduced to form hydrogen bonds and strong Pb O bonds with perovskite precursors, realizing the complete coordination with both the organic (FAI) and inorganic (CsI, PbI2, PbBr2) components, balancing their complexation effects, and realizing AESA-guided fast nucleation and retarded crystallization processes. This treatment substantially promotes homogeneous crystal growth of I- and Br-based perovskite components. Besides, this uniformly distributed AESA passivates the defects and inhibits the photo-induced halide segregation effectively. This strategy generates a record efficiency of 19.66%, with a Voc of 1.25 V and FF of 83.7% for an MA-free WBG p-i-n device at 1.77 eV. The unencapsulated devices display impressive humidity stability at 30 ± 5% RH for 1000 h and much improved continuous operation stability at MPP for 300 h.  相似文献   
53.
Quasi-2D Ruddlesden-Popper perovskites receive tremendous attention for application in light-emitting diodes (LEDs). However, the role of organic ammonium spacers on perovskite film has not been fully-understood. Herein, a spacer cation assisted perovskite nucleation and growth strategy, where guanidinium (GA+) spacer is introduced into the perovskite precursor and at the interface between the hole transport layer (HTL) and the perovskite, to achieve dense and uniform perovskite films with enhanced optical and electrical performance is developed. A thin GABr interface pre-formed on HTL provides more nucleation sites for perovskite crystal; while the added GA+ in perovskite reduces the crystallization rate due to strong hydrogen bonding interacts with intermediates, which promotes the growth of enhanced-quality quasi-2D perovskite films. The ionized ammonium group ( NH3+) of GA+ also favors formation of polydisperse domain distribution, and amine or imine ( NH2 or NH) group interact with perovskite defects through coordination bonding. The spacer cation assisted nucleation and growth strategy is advantageous for producing efficient and high-luminance perovskite LEDs, with a peak external quantum efficiency of over 20% and a luminance up to 100 000 cd m−2. This work can inform and underpin future development of high-performance perovskite LEDs with concurrent high efficiency and brightness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号