首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
机械仪表   1篇
一般工业技术   1篇
自动化技术   1篇
  2024年   1篇
  2021年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
目的 针对先铸坯再模锻方法工艺流程长、能耗高、成本高的缺点,将液态模锻工艺应用于铍青铜件的成形制造中,以提高零件的成形质量、降低成本和能耗。方法 在工业生产条件下,对比研究了主要工艺参数比压对液态模锻铍青铜件试样拉伸性能、冲击性能、硬度及晶粒特征的影响规律。结果 当液锻比压从40 MPa提高至80 MPa时,液锻铍青铜的晶粒尺寸可以细化至65 μm以下,抗拉强度提高了150 MPa,伸长率由20%提高至40%,硬度和冲击韧性分别提高了35HBW和20 J/cm2。结论 液锻比压是影响铍青铜液锻件组织和性能的关键因素,随着液锻比压的增大,液锻铍青铜件晶粒被显著细化,强度、塑性、硬度和冲击韧性均得到显著提高。  相似文献   
2.
3.
Digital twin (DT) is a virtual mirror (representation) of a physical world or a system along its lifecycle. As for a complex discrete manufacturing system (DMS), it is a digital model for emulating or reproducing the functions or actions of a real manufacturing system by giving the system simulation information or directly driven by a real system with proper connections between the DT model and the real-world system. It is a key building block for smart factory and manufacturing under the Industry 4.0 paradigm. The key research question is how to effectively create a DT model during the design stage of a complex manufacturing system and to make it usable throughout the system’s lifecycle such as the production stage. Given that there are some existing discussions on DT framework development, this paper focuses on the modeling methods for rapidly creating a virtual model and the connection implementation mechanism between a physical world production system at a workshop level and its mirrored virtual model. To reach above goals, in this paper, the discrete event system (DES) modeling theory is applied to the three-dimension DT model. First, for formally representing a manufacturing system and creating its virtual model, seven basic elements: controller, executor, processor, buffer, flowing entity, virtual service node and logistics path of a DMS have been identified and the concept of the logistics path network and the service cell is introduced to uniformly describe a manufacturing system. Second, for implementing interconnection and interaction, a new interconnection and data interaction mechanism between the physical system and its virtual model for through-life applications has been designed. With them, each service cell consists of seven elements and encapsulates input/output information and control logic. All the discrete cells are constructed and mapped onto different production-process-oriented digital manufacturing modules by integrating logical, geometric and data models. As a result, the virtual-physical connection is realized to form a DT model. The proposed virtual modeling method and the associated connection mechanism have been applied to a real-world workshop DT to demonstrate its practicality and usefulness.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号