首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3416篇
  免费   314篇
  国内免费   70篇
电工技术   2篇
综合类   36篇
化学工业   1091篇
金属工艺   623篇
机械仪表   29篇
建筑科学   1篇
矿业工程   36篇
能源动力   311篇
轻工业   4篇
水利工程   1篇
石油天然气   1篇
无线电   63篇
一般工业技术   415篇
冶金工业   1041篇
原子能技术   13篇
自动化技术   133篇
  2024年   5篇
  2023年   350篇
  2022年   238篇
  2021年   138篇
  2020年   318篇
  2019年   295篇
  2018年   132篇
  2017年   278篇
  2016年   206篇
  2015年   202篇
  2014年   287篇
  2013年   245篇
  2012年   202篇
  2011年   62篇
  2010年   70篇
  2009年   77篇
  2008年   22篇
  2007年   65篇
  2006年   80篇
  2005年   36篇
  2004年   28篇
  2003年   35篇
  2002年   41篇
  2001年   54篇
  2000年   36篇
  1999年   54篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   10篇
  1994年   22篇
  1993年   20篇
  1992年   22篇
  1991年   19篇
  1990年   15篇
  1989年   16篇
  1988年   21篇
  1987年   30篇
  1986年   32篇
  1985年   15篇
排序方式: 共有3800条查询结果,搜索用时 156 毫秒
1.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
2.
The low shear rate rheology of two phase mesophase pitches derived from coal tar pitch has been investigated. Particulate quinoline insolubles (QI) stabilised the mesophase spheres against coalescence. Viscosity measurements over the range 10–106 Pa s were made at appropriate temperature ranges. Increasing shear thinning behaviour was evident with increasing mesophase content. At low mesophase contents the dominant effect on the near Newtonian viscosity was temperature but at higher contents it was the shear rate; temperature dependence declined to near zero. The data indicated that agglomeration could be occurring at intermediate mesophase volume fractions, 0.2–0.3. The Krieger–Dougherty function and its emulsion analogue indicated that in this region the mesophase pitch emulsions actually behaved like ‘hard’ sphere systems and the effective volume fraction was estimated as a function of shear rate illustrating the change in extent of agglomeration. At the higher volume fractions approaching the maximum packing fraction, which could only be measured at higher temperatures, the shear thinning behaviour changed in character and it is considered that this is possibly due to shear induced deformation and breakup of dispersed drops in the shear field.  相似文献   
3.
This publication contains the thermodynamic results received by the drop calorimetry method. The experiments were conducted for four different cross sections, at the temperature of 1080 K. The investigated alloys were as follows: (Ga0.75Li0.25)1-xGex, (Ge0.50Li0.50)1-xGax, (Ga0.50Li0.50)1-xGex, (Ga0.25Li0.75)1-xGex. The mixing enthalpy changes measured for all four cross sections of the Ga-Ge-Li system are characterized by negative deviations from the ideal solutions. The Muggianu model with the ternary interaction parameters was applied to elaborate the experimental data of the mixing enthalpy change with the use of the optimized thermodynamic parameters of the binary systems available in the literature.  相似文献   
4.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   
5.
We report a simple route to synthesize iron carbide/carbon yolk–shell composite via a facile two-step process including polymerization of pyrrole using Fe3O4 as a sacrificial template to form a Fe3O4/polypyrrole composite, followed by annealing at high temperature in N2 atmosphere. The yolk–shell composite, with iron carbide (Fe2.5C) embedded in nitrogen-doped carbon layers, shows impressively high catalytic activity and stability for oxygen reduction reaction in alkaline solution. Both the pyridinic-N and graphic-N in the shell of Fe3O4–PPy-700, together with the Fe2.5C confined in carbon layers are believed to be the active sites for the ORR.  相似文献   
6.
Tian  J. Y.  Xu  G.  Hu  H. J.  Zhou  M. X. 《Strength of Materials》2019,51(3):439-449
Strength of Materials - A metallographic method, dilatometry, and X-ray diffraction were applied to investigate the effects of undercooling and holding time on bainitic transformation,...  相似文献   
7.
《Ceramics International》2019,45(13):16166-16172
Cr2O3 is a well-known corrosion resistant oxide used in refractory applications. However, it can oxidize into toxic and water-soluble Cr(VI) compounds upon reaction with calcium aluminate cement phases in the presence of oxygen, which subsequently causes disposal problems after use. This study describes the extent to which chromium in the spinel Mg(Al,Cr)2O4 phase can be oxidized to Cr(VI) when it reacts with the calcium aluminate cement phases C12A7, CA, CA2 and free CaO at 1300 °C in air, using XRD, XPS and leaching tests (TRGS 613 standard) as analytical tools. On reaction with CaO, the Mg(Al,CrIII)2O4 spinel mainly transformed into hauyne (Ca4Al6CrVIO16) and Ca5Cr3O12 which contains both Cr(IV) and Cr(VI). The reaction of C12A7 and CA with the spinel phase also resulted in the formation of Ca4Al6CrO16. Conversely, the reaction of Mg(Al,CrIII)2O4 spinel with CA2 resulted in the formation of only a trace amount of Cr(VI). Water-soluble Cr(VI) leached in large quantities (>100 mg/L) from samples where the Mg(Al,CrIII)2O4 reacted with either C12A7 or CA. Almost no Cr(VI) leached from the sample when Mg(Al,CrIII)2O4 reacted with CaO, using the standard TRGS 613 leach test, but a significant amount of Cr(VI) was released into solution when leached with a HCl solution for 12 h. Both Cr(IV) and Cr(VI) present in the Ca5Cr3O12 dissolved into acidic solution. Only a small amount of Cr(VI) leached from the sample that resulted when spinel was reacted with CA2, even after a prolonged HCl leach. Cr(III) in spinel Mg(Al,Cr)2O4 is very stable and does not leach in either distilled water or acidic solution.  相似文献   
8.
This paper presents an overview and examples of material design and development using (1) classical thermodynamics; (2) CALPHAD (calculation of phase diagrams) modeling; and (3) Integrated Computational Materials Engineering (ICME) approaches. Although the examples are given in lightweight aluminum and magnesium alloys for structural applications, the fundamental methodology and modeling principles are applicable to all materials and engineering applications. The examples in this paper have demonstrated the effectiveness and limitations of classical thermodynamics in solving specific problems (such as nucleation during solidification and solid-state precipitation in aluminum alloys). Computational thermodynamics and CALPHAD modeling, when combined with critical experimental validation, have been used to guide the selection and design of new magnesium alloys for elevated-temperature applications. The future of material design and development will be based on a holistic ICME approach. However, key challenges exist in many aspects of ICME framework, such as the lack of diffusion/mobility databases for many materials systems, limitation of current microstructural modeling capability and integration tools for simulation codes of different length scales.  相似文献   
9.
Fine-grained fully-lamellar (FL) microstructure is desired for TiAl components to serve as compressor/turbine blades and turbocharger turbine wheels. This study deals with the process and phase transformation to produce FL microstructure for Mo stabilized beta-gamma TiAl alloys without single α-phase field. Unlike the α + γ two-phased TiAl or beta-gamma TiAl with single α-phase field, the wrought multi-phase TiAl–4/6Nb–2Mo–B/Y alloys exhibit special annealing process to obtain FL microstructure. Short-term annealing at temperatures slightly above β-transus is recommended to produce the desired FL microstructure. The related mechanism is to guarantee the sufficient diffusion homogenization of β stabilizers during single β-phase annealing, and further avoid α decomposition by α → γ + β when cooling through α + β + γ phase field. The colony boundary β phase contributes to fine-grained nearly FL microstructure, by retarding the coarsening of the α phase grains.  相似文献   
10.
《Ceramics International》2020,46(4):4235-4239
In the work, we focused on the intrinsic dielectric behavior of Mg2TiO4 spinel ceramic by P–V–L theory and infrared spectra analysis. Ti–O bonds have larger bond ionicity values, thus playing an important role in dielectric polarization. The theoretical dielectric constant was predicted by calculating the bond susceptibility of each chemical bond. Furthermore, Ti(1)–O bonds are responsible for the structural stability of Mg2TiO4 ceramic. Based on classical dispersion theory, permittivity and loss corresponding to each infrared active mode were quantified, and then the crucial contribution of low-frequency modes to intrinsic dielectric properties were determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号