排序方式: 共有1条查询结果,搜索用时 3 毫秒
1
1.
针对传统传热模型参数调整较复杂和模型精度较低的问题,构建了一种基于改进粒子群算法优化最小二乘支持向量机(least squares SVM,LSSVM)的钢板温度预报模型.首先,对基本粒子群算法进行分析,提出自适应混沌粒子群算法(adaptive chaos PSO,ACPSO),并通过性能指标定量评价验证算法的有效性、鲁棒性和寻优效率.其次,采用LSSVM建立钢板温度预报模型,并选用径向基函数作为核函数,用ACPSO算法优化该模型参数.最后,结合现场数据进行仿真研究和工程应用,结果表明基于该算法建立的钢板温度预报模型具有较高的预报精度,达到智能调优的目的. 相似文献
1