首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3084篇
  免费   310篇
  国内免费   128篇
电工技术   572篇
综合类   86篇
化学工业   253篇
金属工艺   73篇
机械仪表   219篇
建筑科学   31篇
矿业工程   37篇
能源动力   315篇
轻工业   23篇
水利工程   8篇
石油天然气   11篇
武器工业   4篇
无线电   309篇
一般工业技术   170篇
冶金工业   15篇
原子能技术   14篇
自动化技术   1382篇
  2024年   14篇
  2023年   202篇
  2022年   145篇
  2021年   157篇
  2020年   227篇
  2019年   161篇
  2018年   127篇
  2017年   279篇
  2016年   304篇
  2015年   237篇
  2014年   353篇
  2013年   205篇
  2012年   224篇
  2011年   148篇
  2010年   93篇
  2009年   132篇
  2008年   34篇
  2007年   103篇
  2006年   82篇
  2005年   49篇
  2004年   24篇
  2003年   28篇
  2002年   26篇
  2001年   30篇
  2000年   23篇
  1999年   26篇
  1998年   12篇
  1997年   5篇
  1996年   6篇
  1995年   12篇
  1994年   9篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1990年   9篇
  1989年   5篇
  1988年   12篇
  1984年   1篇
  1982年   2篇
  1976年   1篇
  1975年   1篇
  1965年   2篇
  1951年   1篇
排序方式: 共有3522条查询结果,搜索用时 31 毫秒
1.
This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development.  相似文献   
2.
In this paper, the dynamic behaviors on the basis of simulation for high-purity heat integrated air separation column (HIASC) are studied. A nonlinear generic model control (GMC) scheme is proposed based on the nonlinear behavior analyses of a HIASC process, and an adaptive generic model control (AGMC) scheme is further presented to correct the model parameters online. Related internal model control (IMC) scheme and multi-loop PID (M-PID) scheme are also developed as the comparative base. The comparative researches are carried out among these linear and nonlinear control schemes in detail. The simulation research results show that the proposed AGMC schemes present advantages in both servo control and regulatory control for the high-purity HIASC.  相似文献   
3.
The paper describes the development status of Sunfire's reversible solid oxide cell (RSOC) technology. Here, Sunfire is a pioneer in the field of high-temperature electrolysers (HTE) for renewable hydrogen production which can be operated as a fuel cell for power generation in a reverse mode. The maturity of the technology is improved stepwise so that first applications in the field of hydrogen production for industry and electricity storage can be tackled. Three application examples where larger scale prototype has been installed will be discussed: 1) A power-to-power electricity storage based on hydrogen, 2) a RSOC unit that is installed in an iron and steel works, and 3) a pressurized SOEC prototype which will be integrated with a methanation unit. Results show the potentials of the technology in connection with fluctuating renewable energy sources.  相似文献   
4.
BaCu2-xCoxSi2O7 solid solutions with orthorhombic structure (Pnma) were prepared by solid-state reaction method. The phase synthesis process, structural evolution and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics were investigated. Single BaCu2Si2O7 phase was obtained when calcined at 950 °C for 3 h and was decomposed into BaCuSi2O6 phase when calcined at 1075 °C for 3 h. The sintering process was effectively promoted when Cu2+ was replaced by Co2+ and the maximum solubility of BaCu2-xCoxSi2O7 was located between 0.15 and 0.20. P-V-L complex chemical bond theory and Raman spectra were used to explain the structure-property correlations of BaCu2-xCoxSi2O7 ceramics. The corrected dielectric constant (εr-corr) of BaCu2-xCoxSi2O7 ceramics decreased monotonously with the susceptibility (Σχμ) and ionic polarizability of primitive unit cell. The quality factor (Q × f) increased with bond strength and lattice energy (Ucal), especially the lattice energy of the Si-O bond. The temperature coefficient of resonant frequency (τf) was determined by the susceptibility and lattice energy of the Cu/Co-O bond. The following optimum microwave dielectric properties were obtained at x = 0.15 when sintered at 1000 °C for 3 h: εr = 8.45, Q×f =58958 GHz and τf = -34.4 ppm/°C.  相似文献   
5.
This paper presented the exergoeconomic evaluation of the developed desiccant-evaporative air-conditioning system. The developed system was evaluated based on the steady-state conditions at different regeneration and reference temperatures. The exergoeconomic evaluation method was implemented to the system components and the whole system to evaluate the exergy efficiency, exergy destruction ratios, cost rates, relative cost differences and exergoeconomic factors. The regeneration and reference temperatures affected the exergy efficiencies, exergy destruction ratios, cost rates, relative cost differences and exergoeconomic factors. The desiccant wheel, heating coil and evaporative cooler had a high cost rate (investment cost, operation and maintenance cost, and exergy destruction cost). The exit air fan, outdoor air fan and evaporative cooler had a high relative cost difference. The exit air fan, outdoor air fan and secondary heat exchanger had a high exergoeconomic factor. Replacement of the desiccant wheel with a higher dehumidification performance could decrease the high cost rate. A higher efficiency evaporative cooler and heating coil were needed. Cheaper air fans (outdoor air fans and exit air fans) were needed.  相似文献   
6.
Power transformers are protected by different relays that operate independently. Malfunction of each relay has a major role in reducing the reliability of the protection system. In order to mitigate the main drawbacks of the power transformer relays, an overall protection scheme is presented in this paper. This scheme proposes a novel multi criterion algorithm using decision-making based on fuzzy logic. In this paper the outputs of restricted earth fault relay and a directional check unit, are combined with the output of the differential protection relay. Therefore, problems that are pertaining to independent operation of each relay have been mitigated and the relays cover protection blind spots of each other. The improved power transformer protection (IPTP) scheme enhances the sensitivity and reliability of the power transformer protection. Extensive simulations are used to measure the effectiveness and merit of the proposed IPTP relay. The above efforts result in a multi criteria approach for protection of power transformers.  相似文献   
7.
The optimization of energy consumption, with consequent cost reduction, is one of the main challenges for the present and future smart grid. Demand response (DR) program is expected to be vital in home energy management system (HEMS) which aims to schedule the operation of appliances to save energy costs by considering customer convenience as well as characteristics of electric appliances. The DR program is a challenging optimization problem especially when the formulations are non-convex or NP-hard problems. In order to solve this challenging optimization problem efficiently, an effective heuristic approach is proposed to achieve a near optimal solution with low computational costs. Different from previously proposed methods in literatures which are not suitable to be run in embedded devices such as a smart meter. The proposed algorithm can be implemented in an embedded device which has severe limitations on memory size and computational power, and can get an optimal value in real-time. Numerical studies were carried out with the data simulating practical scenarios are provided to demonstrate the effectiveness of the proposed method.  相似文献   
8.
Mg2(Ti1-xSnx)O4 (x?=?0–1) ceramics were prepared through conventional solid-state method. This paper focused on the dependence of microwave dielectric properties on crystal structural characteristics via crystal structure refinement, Raman spectra study and complex chemical bond theory. XRD spectrums delineated the phase information of a spinel structure, and structural characteristic of these compositions were achieved with the help of Rietveld refinements. Raman spectrums were used to depict the correlations between vibrational phonon modes and dielectric properties. The variation of permittivity is ascribed to the Mg2(Ti1-xSnx)O4 average bond covalency. The relationship among the B-site octahedral bond energy, tetrahedral bond energy and temperature coefficient are discussed by defining on the change rate of bond energy and the contribution rate of octahedral bond energy. The quality factor is affected by systematic total lattice energy, and the research of XPS patterns illustrated that oxygen vacancies can be effectively restrained in rich oxygen sintering process. Obviously, the microwave dielectric properties of Mg2(Ti1-xSnx)O4 compounds were obtained (εr= 12.18, Q×f?=?170,130?GHz, τf?=??53.1?ppm/°C, x?=?0.2).  相似文献   
9.
This paper presents an adaptive backstepping-based multilevel approach for the first time to control nonlinear interconnected systems with unknown parameters. The system consists of a nonlinear controller at the first level to neutralize the interaction terms, and some adaptive controllers at the second level, in which the gains are optimally tuned using genetic algorithm. The presented scheme can be used in systems with strong couplings where completely ignoring the interactions leads to problems in performance or stability. In order to test the suitability of the method, two case studies are provided: the uncertain double and triple coupled inverted pendulums connected by springs with unknown parameters. The simulation results show that the method is capable of controlling the system effectively, in both regulation and tracking tasks.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号