首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   4篇
  国内免费   6篇
电工技术   3篇
综合类   3篇
化学工业   63篇
金属工艺   9篇
机械仪表   1篇
建筑科学   10篇
矿业工程   2篇
能源动力   34篇
轻工业   14篇
水利工程   1篇
石油天然气   10篇
无线电   10篇
一般工业技术   19篇
冶金工业   1篇
原子能技术   1篇
自动化技术   42篇
  2023年   11篇
  2022年   5篇
  2021年   24篇
  2020年   30篇
  2019年   24篇
  2018年   3篇
  2017年   14篇
  2016年   6篇
  2015年   7篇
  2014年   14篇
  2013年   10篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   1篇
  2002年   9篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1988年   2篇
排序方式: 共有223条查询结果,搜索用时 281 毫秒
121.
122.
123.
The inert hexagonal to monoclinic celsian (H-M) phase transition extremely restricts the formation of celsian. In this study, Fe3+ dopants were incorporated into nonmagnetic barium aluminosilicate (BAS) glass-ceramics using Fe(NO3)3.9 H2O as raw material for preparing the celsian phase. As the Fe-Ba mole ratio reached 0.238, the celsian phase can be obtained in magnetic BAS glass-ceramics. It implied that some magnetic reaction products facilitated the H-M phase transition. To examine the above inference, magnetic barium ferrite (BFO) additions were externally incorporated into a pure BAS glass matrix. Results suggested that BFO additions can significantly promote the H-M phase transition. When the addition of BFO was increased to 5 wt %, almost all of the hexacelsian phase was converted into the celsian phase. And the reason was that barium ferrite can act as a nucleation agent to induce the distorted hexacelsian phase decreasing the H-M phase transition barrier.  相似文献   
124.
Photocatalytic water splitting is a cost-effective way to convert sustainable solar energy into chemical energy. Among various photocatalytic systems, coupling the H2- and O2- evolving photocatalysts has been widely used in photocatalytic water splitting. However, due to the close spatial distance between surface electrons and surface holes, this heterogeneous material easily catalyzes the unwanted reverse reaction, limiting the solar energy conversion efficiency. Here we present a carbon nitride nanosheet (CNN) homojunction which possesses electrons-enriched region and holes-enriched region induced by the interfacial internal electric field. The reverse reactions are significantly suppressed by benefiting from the spatial separation of the oxidation (+2.21 V) and reduction (-1.19 V) regions. The homojunction exhibits efficient photocatalytic activity for H2 and O2 evolution (1270.5 and 36.0 μmol h−1) with the scavenger. Meanwhile, the solar-to-hydrogen efficiency of overall water splitting was improved to 0.14%. This research provides a new way for semiconductor design in solar energy conversion applications.  相似文献   
125.
在视频流环境下,提出了一种融合序列蒙特卡罗滤波(SMCF)与加权直方图的快速人脸匹配方法,该方法以目标人脸在HSV空间下的加权直方图作为匹配特征,利用SMCF的采样和权值化处理技术预测人脸可能的匹配区域,通过最大后验估计实现目标的快速相似匹配。实验表明,采用在HSV下具有聚类特性的加权直方图特征可有效地适应复杂背景的干扰,同时SMCF的区域预测和最大化估计有效地减小了计算开销,增加了匹配的可靠性,可应用于人脸跟踪、视频监控及数字娱乐等领域。  相似文献   
126.
127.
128.
129.
It is urgent and challenging to exploit highly efficient oxygen evolution reaction (OER) catalysts for water splitting. Bacterial cellulose based carbon nanofiber (BCCNF) is highlighted for its 3D network structure, abundant surface functional groups and good conductivity. Herein, based on the different molar ratio of P/B precursor, a series of nanocotton-like Co–B–P/BCCNF electrocatalysts have been designed and prepared via a simple electroless deposition. When the molar ratio of P/B precursor is 3/7, nanocotton-like Co–B–P/BCCNF catalyst exhibits prominent catalytic performances, delivering the current density of 10 and 50 mA cm?2 at low overpotentials of only 262 and 391 mV, respectively. Besides, it exhibits long-term stability for durative OER in alkaline solution. This result indicates that nanocotton-like Co–B–P/BCCNF catalyst has great potential as OER catalysts for large-scale hydrogen production via water splitting.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号