首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29950篇
  免费   4467篇
  国内免费   2083篇
电工技术   1561篇
技术理论   1篇
综合类   2946篇
化学工业   5403篇
金属工艺   2001篇
机械仪表   1454篇
建筑科学   1306篇
矿业工程   2196篇
能源动力   1414篇
轻工业   4801篇
水利工程   537篇
石油天然气   824篇
武器工业   198篇
无线电   2610篇
一般工业技术   2655篇
冶金工业   660篇
原子能技术   93篇
自动化技术   5840篇
  2024年   156篇
  2023年   1075篇
  2022年   1493篇
  2021年   1657篇
  2020年   1827篇
  2019年   1310篇
  2018年   1167篇
  2017年   1181篇
  2016年   1405篇
  2015年   1525篇
  2014年   2188篇
  2013年   2488篇
  2012年   3661篇
  2011年   3506篇
  2010年   2249篇
  2009年   2527篇
  2008年   1462篇
  2007年   2070篇
  2006年   1549篇
  2005年   595篇
  2004年   204篇
  2003年   183篇
  2002年   172篇
  2001年   140篇
  2000年   121篇
  1999年   125篇
  1998年   76篇
  1997年   30篇
  1996年   54篇
  1995年   51篇
  1994年   45篇
  1993年   25篇
  1992年   27篇
  1991年   27篇
  1990年   29篇
  1989年   21篇
  1988年   45篇
  1987年   1篇
  1986年   7篇
  1985年   2篇
  1982年   3篇
  1980年   2篇
  1979年   4篇
  1976年   2篇
  1959年   1篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 824 毫秒
11.
12.
《Ceramics International》2021,47(22):31852-31859
The primary purpose of this work is to introduce the second phase of graphene (G) into non-stoichiometric TiO1.80 successfully and optimize the thermoelectric properties of this composite material through high pressure and high temperature (HPHT) technology. The purpose of doping Ti powder under high pressure is to create a closed reducing atmosphere to change the ratio of titanium to oxygen in the titanium oxide base. The addition of graphene can considerably improve the electrical properties of the material and reduce its resistivity. An X-ray diffractometer, X-ray photoelectron spectrometer, scanning electron microscope, and transmission electron microscope were used to analyze and characterize the phase structure, chemical bond, micro morphology and crystal morphology of the samples. An abundance of grain boundaries and lattice dislocation defects can inhibit the lattice thermal conductivity. We also tested and analyzed the thermoelectric performance of the high-temperature and high-pressure synthetic samples through a variable temperature system. The variation of the absorption intensity of the ultraviolet UV spectrum with wavelength shows that high pressure can reduce the band gap, which is beneficial to the carrier transition and improves the conductivity of semiconductors. HPHT optimizes both the electrical and the thermal parameters of the sample. At a final sintering pressure of 5.0 GPa, the dimensionless figure of merit (zT) of the bulk composite material G/TiO1.80 was found to be 0.23 at 700 °C.  相似文献   
13.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
14.
In this work, 0.2 wt.% Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 (x = 0.00–0.04) ceramics were synthesized via solid state reaction method in flowing oxygen. The evolution of microstructure, phase transition and energy storage properties were investigated to evaluate the potential as high energy storage capacitors. Relaxor ferroelectric Bi0.5Na0.5TiO3 was introduced to stabilize the antiferroelectric state through modulating the M1-M2 phase transition. Enhanced energy storage performance was achieved for the 3 mol% Bi0.5Na0.5TiO3 doped AgNbO3 ceramic with high recoverable energy density of 3.4 J/cm3 and energy efficiency of 62% under an applied field of 220 kV/cm. The improved energy storage performance can be attributed to the stabilized antiferroelectricity and decreased electrical hysteresis ΔE. In addition, the ceramics also displayed excellent thermal stability with low energy density variation (<6%) over a wide temperature range of 20−80 °C. These results indicate that Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 ceramics are highly efficient lead-free antiferroelectric materials for potential application in high energy storage capacitors.  相似文献   
15.
Prostephanus truncatus is a notorious pest of stored-maize grain and its spread throughout sub-Saharan Africa has led to increased levels of grain storage losses. The current study developed models to predict the level of P. truncatus infestation and associated damage of maize grain in smallholder farmer stores. Data were gathered from grain storage trials conducted in Hwedza and Mbire districts of Zimbabwe and correlated with weather data for each site. Insect counts of P. truncatus and other common stored grain insect pests had a strong correlation with time of year with highest recorded numbers from January to May. Correlation analysis showed insect-generated grain dust from boring and feeding activity to be the best indicator of P. truncatus presence in stores (r = 0.70), while a moderate correlation (r = 0.48) was found between P. truncatus numbers and storage insect parasitic wasps, and grain damage levels significantly correlated with the presence of Tribolium castaneum (r = 0.60). Models were developed for predicting P. truncatus infestation and grain damage using parameter selection algorithms and decision-tree machine learning algorithms with 10-fold cross-validation. The P. truncatus population size prediction model performance was weak (r = 0.43) due to the complicated sampling and detection of the pest and eight-week long period between sampling events. The grain damage prediction model had a stronger correlation coefficient (r = 0.93) and is a good estimator for in situ stored grain insect damage. The models were developed for use under southern African climatic conditions and can be improved with more input data to create more precise models for building decision-support tools for smallholder maize-based production systems.  相似文献   
16.
采用动态平衡法,在293.15~332.80 K、常压下,测定了双季戊四醇(DPE)在水+(甲醇、乙醇、异丙醇)三种混合溶剂中的溶解度数据。结果表明:DPE在不同质量分数的水+(甲醇、乙醇、异丙醇)混合溶剂中的溶解度随体系温度升高而增大;同一温度下,其在所选取溶剂体系中的溶解度随着甲醇、乙醇或异丙醇质量分数的增大而先增大后减小。λh方程、两参数方程与Apelblat方程均能够对所测定的溶解度数据进行较好的关联;通过修正的van’t Hoff方程计算得到DPE在所选取溶剂体系中Δsol H 0、Δsol S 0和Δsol G 0均大于零,表明DPE在所选取溶剂体系中的溶解过程为吸热、熵增的非自发过程。  相似文献   
17.
《Ceramics International》2020,46(12):20306-20312
Although the antibacterial properties of MXene nanosheets containing Ti3C2Tx are known, their antifungal properties have not been well studied. Herein, we present for the first time a report on the antifungal properties of Ti3C2Tx MXene. The Ti3C2Tx MXene was obtained by first exfoliating MAX phase of Ti3AlC2 with concentrated hydrofluoric acid, then the Ti3C2Tx was intercalated and deliminated by ethanol treatment and ultrasonication process. The delaminated Ti3C2Tx MXene nanosheets (d-Ti3C2Tx) were characterized using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), X-ray diffraction spectroscopy (XRD), and Raman spectroscopy. It was found that Ti3C2Tx MXene was characterized by lamellar structure alternating with layers of Ti, Al and C. The EDX results revealed that the delaminated Ti3C2Tx MXene nanosheets were composed of Ti, C, Si, O, F, and a trace amount of Al. The XRD and Raman spectra further indicated the elimination of Al and the formation of two-dimensional Ti3C2Tx MXene nanosheets. The antifungal activity of the delaminated Ti3C2Tx MXene was determined against Trichoderma reesei using the modified agar disc method. Observation using inverted phase contrastmicroscopy revealed inhibited fungus growth with the absence of hyphae around the discs treated wtih MXene. The surrounding of the control groups without an inclusion of MXene was found with large number of hyphae and spores. In addition, the spores of the fungi treated with the samples containing d-Ti3C2Tx MXene nanosheets did not germinate even after 11 days of culture. The results demonstrated disruption to the hemispheric structural formation of fungi colony, inhibition of hyphae growth and cell damage for fungi grown on the d-Ti3C2Tx MXene nanosheets. These new findings suggest that d-Ti3C2Tx MXene nanosheets developed in this work could be a promising anti-fungi material.  相似文献   
18.
5G时代的到来加快了以车路协同为核心的车联网技术的发展脚步。高效,可靠,安全的通信质量将是实现智能交通管理系统,完善智慧出行的基本要求。因此,针对存在信息窃取者的车联网中继协作传输场景,利用机会式中继选择策略与最大比合并技术设计了直接传输链路与多跳中继转发链路共存的安全传输方案,旨在提高信息传输的可靠性及安全性。同时,在获得信道概率密度函数及累积分布函数的基础上,利用全概率公式等方法推导出基于DF(Decode-Forward)中继协作传输的车联网系统安全中断概率的闭合表达式,其中涉及的信息传输信道均服从Nakagami-m分布,提高了理论推导的难度。最终的仿真实验证实了理论推导的准确性及本方案的可行性。   相似文献   
19.
In this study, a multi-tubular thermally coupled packed bed reactor in which simultaneous production of ammonia and methyl ethyl ketone (MEK) takes place is simulated. The simulation results are presented in two co-current and counter-current flow modes. Based on this new configuration, the released heat from the ammonia synthesis reaction as an extremely exothermic reaction in the inner tube is employed to supply the required heat for the endothermic 2-butanol dehydrogenation reaction in the outer tube. On the other hand, MEK and hydrogen are produced by the dehydrogenation reaction of 2-butanol in the endothermic side, and the produced hydrogen is used to supply a part of the ammonia synthesis feed in the exothermic side. Thus, 30.72% and 31.88% of the required hydrogen for the ammonia synthesis are provided by the dehydrogenation reaction in the co-current and counter-current configurations, respectively. Also, according to the thermal coupling, the required cooler and furnace for the ammonia synthesis and 2-butanol dehydrogenation conventional plants are eliminated, respectively. As a result, operational costs, energy consumption and furnace emissions are considerably decreased. Finally, a sensitivity analysis and optimization are applied to study the effect of the main process parameters variation on the system performance and obtain the minimum hydrogen make-up flow rate, respectively.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号