首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   5篇
电工技术   3篇
化学工业   2篇
金属工艺   3篇
建筑科学   1篇
能源动力   13篇
无线电   2篇
一般工业技术   1篇
原子能技术   1篇
自动化技术   2篇
  2023年   8篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2009年   2篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  1996年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
11.
国网吉林电力城网和农网有约11万公变台区,三相不平衡对电压合格率、线损、变压器负载能力及设备健康水平等指标影响较大,在传统的三相负载不平衡调整方法中,一线员工常常根据运行数据,凭借经验解决现场问题,由于没有科学的调整方法,效果往往不佳。国网吉林电力已经实现智能电能表全覆盖,充分利用智能电能表的非计量数据和相关应用技术,创新提出基于电力线窄带载波同步过零技术,开展低压客户自动相位识别技术研究,实现对客户所在相位的判别,运用贪心算法智能生成三相不平衡治理策略,开发简单易用的智能辅助工具,为一线员工提供解决实际问题的有效技术手段,在保证各项指标的基础上,进一步提高供电可靠性和公司经济效益。  相似文献   
12.
基于粗糙集与证据理论的凝汽器故障诊断研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对凝汽器故障诊断问题,提出了一种基于粗糙集和证据理论相结合的故障诊断方法。利用粗糙集相对约简的不唯一性,对凝汽器故障征兆进行分类,形成不同的证据来源,既实现了证据理论对于同一事物要求有不同的证据来源的要求,又对故障征兆参数进行了降维处理,减小了网络的规模,有效缓解了由于输入参数过多给网络带来的收敛困难问题。该诊断方法将粗糙集、神经网络和证据理论有机地结合在一起,使三者优势互补,充分利用了凝汽器故障征兆的冗余、互补信息。实例证明,基于多故障诊断网络信息融合的诊断识别准确性和可靠性比基于单一故障诊断网络的诊断识别有较大的提高。  相似文献   
13.
In this paper, an integrated energy system (IES) consisting of wind turbine unit, photovoltaic cell unit, electrolytic hydrogen unit, fuel cell unit, and hydrogen storage unit is proposed, and the construction of multi objectives for day-ahead power dispatching of the IES considering both operation and environment cost is discussed. By adopting piecewise linearization method, the optimization variables are divided into 24 periods, and the day-ahead power dispatching optimization problem is transformed into a 24-h piecewise optimization problem. On the basis, a complete non-linear mixed integer dynamic scheduling optimization model is established. An improved non-dominated sorting genetic algorithm (NSGA-II) is applied to solving the model. In optimization process, an interactive strategy is adopted to solve the coordination between discretization of variables and restriction of switching times of electrolyzer. Optimization results show that, compared with the single objective of minimizing operating costs, the multi-objective optimization scheme can reduce carbon emissions by 3.5% with 2.8% increase of operating cost. Compared with the single objective of minimizing environmental, the multi-objective optimization scheme can reduce operating cost carbon by 5.12% with 2.6% increase of environmental cost.  相似文献   
14.
The Fluoride-salt-cooled High temperature Reactor (FHR) is an advanced concept combining attractive attributes by adopting low pressure liquid salt, high temperature coated particle fuel and air-Brayton combined cycle. 2 MW Thorium-based Molten Salt Reactor with Solid Fuel (TMSR-SF) designed by Shanghai Institute of Applied Physics (SINAP) as a test reactor is planned to be constructed. In this paper, the preliminary neutronic and thermal-hydraulic analysis of the TMSR-SF is performed. The neutronic investigation is conducted by developing a validated 3-D model for the reactor with MCNP-4C. Core physics parameters of TMSR-SF including the effective multiplication factor, neutron flux distribution, power density distribution, control system worth, reactivity coefficients and kinetics parameters are obtained, which are used as input parameters for the thermal-hydraulic analysis of the TMSR-SF. The FHR Safety Analysis Code (FSAC) is extended to study the safety characteristics of the TMSR-SF by simulating four types of basic transient conditions including the unprotected loss of flow (ULOF), unprotected overcooling (UOC), unprotected transient overpower (UTOP) and the combination of ULOF and UTOP. The results show that the concept design of TMSR-SF is an inherently safe design with no temperature limits exceeded in the analyzed transient conditions.  相似文献   
15.
Reversible solid oxide cells (RSOCs) are prone to material thermal property mismatching problems between electrodes and electrolyte, which greatly reduces their energy efficiency and causes irreversible performance degradation. One solution is to develop symmetrical RSOCs (SRSOCs) employing identical electrode materials to effectively address thermal property mismatching related issues and also simplify the manufacturing process. Herein, La1-xSrxFeO3-δ (x = 0–0.20) perovskites are developed and applied as both fuel and air electrode materials for SRSOCs for the first time. The impact of Sr substitution for La on the crystal structures, conductivities and electrochemical performance of LaFeO3 oxides is systematically investigated. It is found, after doping with Sr, overall properties of the LaFeO3 oxides show an obvious improvement, especially for the sample of La0·9Sr0·1FeO3-δ (LSF9010). The peak power density of SRSOCs featuring LSF9010 can stand at 0.575 W cm−2 at 800 °C under the solid oxide fuel cell (SOFC) working model. Under solid oxide electrolysis cell (SOEC) model, the current density stands at 0.84 A cm−2 at 800 °C and 1.5 V. More importantly, the La0·9Sr0·1FeO3-δ symmetrical cell can operate steadily for 128 h under SOFC mode and 25 h under SOFC-SOEC cycle mode, respectively, with almost no performance degradation found. The outcomes of the current study show that the developed LSF9010 may be used as an outstanding multifunctional electrode material in SRSOCs.  相似文献   
16.
Tensile properties of thixomolded AZ91D alloy were studied to investigate the fracture mechanism by the microstructure and decohesion surfaces of tensile specimens which were manufactured at different processing conditions including barrel temperature, shot velocity, mold temperature and screw rotation speed. The results revealed that mechanical properties of thixomolded AZ91D mainly depended on porosity level, the size and volume fraction of primary solid phase and the size of α-Mg and β-Mg17Al12 in liquid phase. The increase in barrel temperature and shot velocity would cause the increase of both strength and ductility, while increasing mold temperature or improving screw rotation speed was coupled by the reduction of tensile properties. The tensile behaviors for different processing parameters were reasonably interpreted through the dependant factors during the deformation.  相似文献   
17.
Studies suggest that onshore wind resources in the contiguous US could readily accommodate present and anticipated future US demand for electricity. The problem with the output from a single wind farm located in any particular region is that it is variable on time scales ranging from minutes to days posing difficulties for incorporating relevant outputs into an integrated power system. The high frequency (shorter than once per day) variability of contributions from individual wind farms is determined mainly by locally generated small scale boundary layer. The low frequency variability (longer than once per day) is associated with the passage of transient waves in the atmosphere with a characteristic time scale of several days. Using 5 years of assimilated wind data, we show that the high frequency variability of wind-generated power can be significantly reduced by coupling outputs from 5 to 10 wind farms distributed uniformly over a ten state region of the Central US in this study. More than 95% of the remaining variability of the coupled system is concentrated at time scales longer than a day, allowing operators to take advantage of multi-day weather forecasts in scheduling projected contributions from wind.  相似文献   
18.
19.
In this paper, the effects of direct water injection (WI) on characteristics of combustion and emission for a hydrogen (H2)-fueled spark ignition (SI) engine were experimentally investigated. The experiments conducted under different amounts of water injection (AWI) and varied water injection timing (WIT). The experimental results showed that in-cylinder pressure decreased, indicated thermal efficiency (ITE) increased, and the flame development (CA0-10) and propagation (CA10-90) periods prolonged when AWI raised. When AIW grew to 4.5 mg/cycle, Nitrogen oxides (NOx) expelled from the original engine decreased by 53.7% when excess air ratio (λ) was 1.15. Early WIT had positive effects on the reduction of NOx emissions. When WIT retarded, in-cylinder pressure increased, ITE decreased and CA0-10 and CA10-90 shortened, NOx emissions rapidly increased.  相似文献   
20.
《Ceramics International》2016,42(16):18128-18135
Shale was used as main raw material for developing thermal storage ceramics. The samples were fabricated via semi-dry pressing followed by pressureless sintering. The result showed that the sample (75% shale, 10% kaolin, 10% potash feldspar and 5% soda feldspar) fired at 1080 °C exhibited the best comprehensive performance. Ocular examination reveals that no cracks were observed after 30 cycle times thermal shock tests (wind cooling from 600 °C to room temperature). The results presented that the high bending strength remained after 20 cycle times thermal shock tests but plummeted at the thirtieth time. Other properties were given as follows: bulk density: 2.60 g/cm3; thermal conductivity: 2.33 W/(m °C); and heat storage density: 578.50 mJ/m3. XRD analysis indicated that the quartz and hematite were the main solid phases in the sample. Some isolated pores, quartz crystals, granular hematite crystals and needle-like mullite crystals were observed in the matrix according to the SEM (Scanning Electron Microscope) analysis. More pores were found with temperature rizing according to SEM analysis. The relatively high content of Fe2O3 contributed to the formation of the vitreous phase and favored the densification. Overall, the introduction of shale effectively reduced the firing temperature and performed the better thermal storage properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号