首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211836篇
  免费   16312篇
  国内免费   11852篇
电工技术   12240篇
技术理论   7篇
综合类   17219篇
化学工业   37244篇
金属工艺   16576篇
机械仪表   13894篇
建筑科学   22764篇
矿业工程   5174篇
能源动力   6234篇
轻工业   13511篇
水利工程   3104篇
石油天然气   9322篇
武器工业   1904篇
无线电   19275篇
一般工业技术   25385篇
冶金工业   6697篇
原子能技术   1997篇
自动化技术   27453篇
  2024年   470篇
  2023年   2639篇
  2022年   4188篇
  2021年   5913篇
  2020年   5271篇
  2019年   4836篇
  2018年   4551篇
  2017年   5857篇
  2016年   6575篇
  2015年   7558篇
  2014年   11565篇
  2013年   11498篇
  2012年   13424篇
  2011年   16217篇
  2010年   13173篇
  2009年   14387篇
  2008年   13165篇
  2007年   14585篇
  2006年   13365篇
  2005年   11270篇
  2004年   9646篇
  2003年   9053篇
  2002年   7657篇
  2001年   5938篇
  2000年   5096篇
  1999年   4195篇
  1998年   3188篇
  1997年   2597篇
  1996年   2158篇
  1995年   1957篇
  1994年   1762篇
  1993年   1348篇
  1992年   1114篇
  1991年   767篇
  1990年   566篇
  1989年   476篇
  1988年   333篇
  1987年   202篇
  1986年   185篇
  1985年   177篇
  1984年   154篇
  1983年   121篇
  1982年   143篇
  1981年   105篇
  1980年   167篇
  1979年   52篇
  1978年   38篇
  1977年   36篇
  1976年   37篇
  1975年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Aluminum alloy bipolar plates have unique application potential in proton exchange membrane fuel cell (PEMFC) due to the characteristics of lightweight and low cost. However, extreme susceptibility to corrosion in PEMFC operation condition limits the application. To promote the corrosion resistance of aluminum alloy bipolar plates, a Ni–P/TiNO coating was prepared by electroless plating and closed field unbalanced magnetron sputter ion plating (CFUMSIP) technology on the 6061 Al substrate. The research results show that Ni–P interlayer improves the deposition effect of TiNO outer layer and increase the content of TiN and TiOxNy phases. Compared to Ni–P and TiNO single-layer coatings, the Ni–P/TiNO coating samples exhibited the lowest current density value of (1.10 ± 0.02) × 10?6 A·cm?2 in simulated PEMFC cathode environment. Additionally, potential cyclic polarization measurements were carried out aiming to evaluate the durability of the aluminum alloy bipolar plate during the PEMFC start-up/shut-up process. The results illustrate that the Ni–P/TiNO coating samples exhibit excellent stability and corrosion resistance.  相似文献   
42.
The combustion characteristics of ammonia/methanol mixtures were investigated numerically in this study. Methanol has a dramatic promotive effect on the laminar burning velocity (LBV) of ammonia. Three mechanisms from literature and another four self-developed mechanisms constructed in this study were evaluated using the measured laminar burning velocities of ammonia/methanol mixtures from Wang et al. (Combust.Flame. 2021). Generally, none of the selected mechanisms can precisely predict the measured laminar burning velocities at all conditions. Aiming to develop a simplified and reliable mechanism for ammonia/methanol mixtures, the constructed mechanism utilized NUI Galway mechanism (Combust.Flame. 2016) as methanol sub-mechanism and the Otomo mechanism (Int. J. Hydrogen. Energy. 2018) as ammonia sub-mechanism was optimized and reduced. The reduced mechanism entitled ‘DNO-NH3’, can accurately reproduce the measured laminar burning velocities of ammonia/methanol mixtures under all conditions. A reaction path analysis of the ammonia/methanol mixtures based on the DNO-NH3 mechanism shows that methanol is not directly involved in ammonia oxidation, instead, the produced methyl radicals from methanol oxidization contribute to the dehydrogenation of ammonia. Besides, NOx emission analysis demonstrates that 60% methanol addition results in the highest NOx emissions. The most important reactions dominating the NOx consumption and production are identified in this study.  相似文献   
43.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
44.
杨立宁  郑东昊  王立新  杨光 《化工进展》2022,41(11):5961-5967
以具有轻质高强优异性能的蜻蜓翅脉结构为设计灵感,在分析翅脉网格结构抗冲击原理的基础上,设计了传统和仿生两类对比结构。采用熔融挤出3D打印机成功制备了具有不同结构的连续碳纤维增强聚乳酸复合材料试样,并对不同结构复合材料试样的拉伸性能和抗冲击性能进行了测试和对比分析。研究分析结果表明:由于拉伸力方向上的连续碳纤维含量相对较少,限制了仿生结构复合材料抗拉强度的提高,但仿生结构的平均抗拉强度为传统结构的1.18倍;当仿生结构复合材料试样受到冲击力时,其内部六边形结构的连接角度会发生变化,从而极大消耗冲击能量,同时具有六边形网格结构的连续碳纤维可以有效阻碍裂纹的扩展,因此仿生结构的平均冲击韧性可以达到传统结构的2.46倍;仿生蜻蜓翅脉结构可以显著提高增材制造复合材料的综合力学性能,且对于抗冲击性能的提高具体突出效果。连续碳纤维增强树脂基复合材料的有效可行的仿生蜻蜓翅脉结构设计和增材制造,可极大扩展其在高冲击载荷领域中的相应应用。  相似文献   
45.
Constructing efficient and stable bifunctional electrocatalysts for overall water splitting remains a challenge because of the sluggish reaction kinetics. Herein, the core-shell hybrids composed of Co(PO3)2 nanorod core and NiFe alloy shell in situ grown on nickel foam (NiFe/Co(PO3)2@NF) are synthesized. Owing to the hierarchical palm-leaf-like structures and strong adhesion between NiFe alloys, Co(PO3)2 and substrates, the catalyst provides a large surface area and rapid charge transfer, which facilitates active sites exposure and conductivity enhancement. The interfacial effect in the NiFe/Co(PO3)2 core-shell structure modulates the electronic structure of the active sites around the boundary, thereby boosting the intrinsic activity. Benefiting from the stable structure, the durability of the catalyst is not impaired by the inevitable surface reconfiguration. The NiFe/Co(PO3)2@NF electrode presents a low cell voltage of 1.63 V to achieve 10 mA cm?2 and manifests durability for up to 36 h at different current densities.  相似文献   
46.
《Ceramics International》2021,47(21):29722-29729
As semiconductor devices have become miniaturized and highly integrated, interconnection problems such as RC delays, power dissipation, and crosstalk appear. To alleviate these problems, materials with a low dielectric constant should be used for the interlayer dielectric in nanoscale semiconductor devices. Silica aerogel as a porous structure composed of silica and air can be used as the interlayer dielectric material to achieve a very low dielectric constant. However, the problem of its low stiffness needs to be resolved for the endurance required in planarization. The purpose of this study is to discover the geometric effect of the electrical and mechanical properties of silica aerogel. The effects of porosity, the distribution of pores, the number of pores on the dielectric constant, and elastic modulus were analyzed using FEM. The results suggest that the porosity of silica aerogel is the main parameter that determines the dielectric constant and it should be at least 0.76 to have a very low dielectric constant of 1.5. Additionally, while maintaining the porosity of 0.76, the silica aerogel needs to be designed in an ordered open pores structure (OOPS) containing 64 or more pores positioned in a simple cubic lattice point to endure in planarization, which requires an elastic modulus of 8 GPa to prevent delamination.  相似文献   
47.
48.
49.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
50.
The bacterial formulations, spinosad and spinetoram, were evaluated for their efficacy in suppressing development and mating success in Cadra cautella (Walk.) (Lepidoptera: Pyralidae), the almond moth. A dilution series of spinosad and spinetoram was sprayed on rice flour. Rice flour samples sprayed with water served as the control. Late instar C. cautella larvae were introduced onto spinosad-, spinetoram-, or water-treated rice flour. The first experiment tested the effects of spinosad and spinetoram on larval mortality, as well as emergence of adults and progeny at different insecticide concentrations. In the second experiment, the mating success of C. cautella adults that had emerged from larvae exposed to spinosad was tested inside a cubicle. Both spinosad and spinetoram increased larval mortality, whereas both compounds reduced adult emergence and progeny production. Natural mating was reduced in the presence of the synthetic sex pheromone (Z,E)-9,12-tetradecadienyl acetate. However, exposure of C. cautella larvae to spinosad did not alter mating in adult progeny. Spinosad was more effective than spinetoram at suppressing C. cautella development. The study concludes that both spinosad and spinetoram suppress the development of immatures of C. cautella to the adult stage as well as mating. Thus, the both compounds can be used to protect stored grains from infestation by C. cautella.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号