首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27408篇
  免费   2174篇
  国内免费   1126篇
电工技术   1398篇
技术理论   6篇
综合类   1112篇
化学工业   7433篇
金属工艺   1422篇
机械仪表   1053篇
建筑科学   1510篇
矿业工程   1087篇
能源动力   4157篇
轻工业   779篇
水利工程   200篇
石油天然气   705篇
武器工业   90篇
无线电   1990篇
一般工业技术   4812篇
冶金工业   1557篇
原子能技术   591篇
自动化技术   806篇
  2024年   45篇
  2023年   450篇
  2022年   782篇
  2021年   948篇
  2020年   949篇
  2019年   864篇
  2018年   848篇
  2017年   867篇
  2016年   903篇
  2015年   934篇
  2014年   1595篇
  2013年   1660篇
  2012年   1744篇
  2011年   2554篇
  2010年   1905篇
  2009年   1815篇
  2008年   1573篇
  2007年   1494篇
  2006年   1613篇
  2005年   1304篇
  2004年   1091篇
  2003年   905篇
  2002年   806篇
  2001年   491篇
  2000年   455篇
  1999年   402篇
  1998年   304篇
  1997年   269篇
  1996年   204篇
  1995年   193篇
  1994年   161篇
  1993年   106篇
  1992年   84篇
  1991年   78篇
  1990年   73篇
  1989年   43篇
  1988年   29篇
  1987年   24篇
  1986年   24篇
  1985年   26篇
  1984年   19篇
  1983年   9篇
  1982年   31篇
  1981年   13篇
  1980年   3篇
  1979年   8篇
  1978年   3篇
  1959年   3篇
  1958年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
为了准确测量不同材料在实际环境中的二次电子空间分布,设计了一种新型的二次电子发射空间分布测量结构,给出了实验测量原理,用求解特征矩阵的方法对实验结果进行处理,得到了所需的二次电子空间分布。通过模拟计算对该测量方法进行了校验,模拟结果与假设二次电子空间分布函数相吻合,表明该测量方法可靠、测量精度高,为后续样机研制奠定了理论基础。  相似文献   
32.
《Ceramics International》2020,46(7):8928-8934
Multifunctional nanomaterials composed of magnetic and fluorescent nanoparticles have been one of the most extensive pursuits because of the potential application in bio-research. In this paper, we demonstrated an efficient method by coupling CdSe/CdS/ZnS quantum dots (QDs) with Fe3O4 magnetic nanoparticles(MNPs) while functionalized multiwall carbon nanotubes (f-MWCNTs) were used as matrix to synthesize a kind of magnetic fluorescent nanocomposite. Compared with other matrix materials, carbon nanotubes have the advantages of high surface areas and good biocompatibility. The incorporation of f-MWCNTs supplies plenty of nucleation sites for the preferential growth of Fe3O4 nanoparticles, avoiding the agglomeration phenomenon of Fe3O4 MNPs in traditional co-precipitation method. Moreover, the un-reacted functional groups of f-MCNTs can further adsorb biological species and drugs, averting the decline of fluorescent intensity caused by the modification of biological species and drugs. The synthetic product maintains the unique properties of rapid magnetic response and efficient fluorescence, which shows a broad application prospect in fluorescent labeling, biological imaging, cell tracking and drug delivery.  相似文献   
33.
《Ceramics International》2022,48(14):20237-20244
Composite anode materials with a unique architecture of carbon nanotubes (CNTs)-chained spinel lithium titanate (Li4Ti5O12, LTO) nanoparticles are prepared for lithium ion capacitors (LICs). The CNTs networks derived from commercial conductive slurry not only bring out a steric hindrance effect to restrict the growth of Li4Ti5O12 particles but greatly enhance the electronic conductivity of the CNTs/LTO composites, both have contributed to the excellent rate capability and cycle stability. The capacity retention at 30 C (1 C = 175 mA g?1) is as high as 89.7% of that at 0.2 C with a CNTs content of 11 wt%. Meanwhile, there is not any capacity degradation after 500 cycles at 5 C. The LIC assembled with activated carbon (AC) cathode and such a CNTs/LTO composite anode displays excellent energy storage properties, including a high energy density of 35 Wh kg?1 at 7434 W kg?1, and a high capacity retention of 87.8% after 2200 cycles at 1 A g?1. These electrochemical performances outperform the reported data achieved on other LTO anode-based LICs. Considering the facile and scalable preparation process proposed herein, the CNTs/LTO composites can be very potential anode materials for hybrid capacitors towards high power-energy outputs.  相似文献   
34.
《Ceramics International》2022,48(24):36238-36248
Cf/SiC composite is an excellent structural and functional material, silicon carbide nanowires (SiCnws) are not only a toughening material but also a great application in the field of microwave absorption. In this study, SiCnws are grown on the surface of carbon fiber (Cf) by polymer impregnation and pyrolysis, and the SiC matrix was prepared by chemical vapor osmosis method. The SiCnws are introduced to enhance the mechanical and microwave absorption properties simultaneously. After 3 impregnations, the flexural strength of the composite was 107.35 ± 10 MPa. When the thickness is 1.86 mm, the minimum reflection loss value is ?41.08 dB, and the effective absorption bandwidth (RL ≤ ?10 dB) is 3.86 GHz. Furthermore, the microwave absorption mechanism of the material is discussed. This work provides a new method to prepare lightweight, stable and high-performance microwave absorption materials, and these materials are expected to be used in high temperature environments.  相似文献   
35.
The light scattering, harvesting and adsorption effects in dye-sensitized solar cells (DSSCs) are studied by preparation of coated carbon nanotubes (CNTs) with TiO2 and Zr-doped TiO2 nanoparticles in the forms of mono- and double-layer cells. X-ray diffraction (XRD) analysis reveals that the phase composition of Zr-doped TiO2 electrode is a mixture of anatase and rutile phases with major rutile content, whereas it is the same mixture with major anatase content for coated CNTs with TiO2. Furthermore, the average crystallite size of Zr-doped TiO2 electrode is slightly decreased with Zr introduction. Field emission scanning electron microscope (FE-SEM) images show that the porosity of Zr-doped TiO2 electrodes is higher than that of undoped electrode, enhancing dye adsorption. UV–visible spectroscopy analysis reveals that the absorption onset of Zr-doped TiO2 electrodes is slightly shifted to longer wavelength (the red-shift) in comparison with that of undoped TiO2 electrode. Moreover, the band gap energy of TiO2 nanoparticles is decreased by Zr introduction, enhancing light absorption. It is found that electron injection of monolayer TiO2 electrode is improved by introduction of 0.025 mol% Zr, resulted in enhancement of its power conversion efficiency (PCE) up to 6.81% compared with 6.17% for pure TiO2 electrode. Moreover, electron transport and light scattering are enhanced by incorporation of 0.025 wt% coated CNTs with TiO2 in the over-layer of double layer electrode. Therefore, double layer solar cell composed of 0.025 mol% Zr-doped TiO2 nanoparticles as the under-layer and mixtures of these nanoparticles and 0.025 wt% coated CNTs with TiO2 as the over-layer shows the highest PCE of 8.19%.  相似文献   
36.
This article reported a series of g–C3N4–CNS (g-C3N4 and carbon nanosheets) composite carriers formed by the hydrothermal method, and then the ethylene glycol reduction method was used to anchor Pt nanoparticles on the g–C3N4–CNS carrier to form the Pt/g–C3N4–CNS catalysts. The electrochemical test for the electrocatalytic oxidation of methanol (MOR) shown that the Pt/20%g–C3N4–CNS catalyst has the best catalytic performance and stability. These Pt/g–C3N4–CNS catalysts were analyzed by TEM, XRD, XPS, and BET characterization. It is discovered that the amount of g-C3N4 greatly influenced the structure and chemical properties of Pt/CNS precursor. As the content of g-C3N4 increases, the content of pyridine nitrogen and pyrrole nitrogen also increases, and N species can enhance the interaction between Pt nanoparticles and CNS, promote Pt dispersion, and increase the specific surface area of the catalyst. Similarly, an excessive addition of g-C3N4 will cause a sharp decline in the conductivity of the catalyst, and then led to the decline of MOR activity.  相似文献   
37.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   
38.
Tunable and ultrabroadband mid-infrared (MIR) emissions in the range of 2.5–4.5 μm are firstly reported from Co2+-doped nano-chalcogenide (ChG) glass composites. The composites embedded with a variety of binary (ZnS, CdS, ZnSe) and ternary (ZnCdS, ZnSSe) ChG nanocrystals (NCs) can be readily obtained by a simple one-step thermal annealing method. They are highly transparent in the near- and mid-infrared wavelength region. Low-cost and commercially available Er3+-doped fiber lasers can be used as the excitation source. By crystal-field engineering of the embedded NCs through cation- or anion-substitution, the emission properties of Co2+ including its emission peak wavelength and bandwidth can be tailored in a broad spectral range. The phenomena can be accounted for by crystal-field theory. Such nano-ChG composites, perfectly filling the 3–4 μm spectral gap between the oscillations of Cr2+ and Fe2+ doped IIVI ChG crystals, may find important MIR photonic applications (e.g., gas sensing), or can be used directly as an efficient pump source for Fe2+: IIVI crystals which are suffering from lack of pump sources.  相似文献   
39.
One of the biggest challenges of the materials science is the mutual exclusion of strength and toughness. This issue was minimized by mimicking the natural structural materials. To date, few efforts were done regarding materials that should be used in harsh environments. In this work we present novel continuous carbon fiber reinforced ultra-high-temperature ceramic matrix composites (UHTCMCs) for aerospace featuring optimized fiber/matrix interfaces and fibers distribution. The microstructures – produced by electrophoretic deposition of ZrB2 on unidirectional carbon fibers followed by ZrB2 infiltration and hot pressing – show a maximum flexural strength and fracture toughness of 330 MPa and 14 MPa m1/2, respectively. Fracture surfaces are investigated to understand the mechanisms that affect strength and toughness. The EPD technique allows the achievement of a peculiar salami-inspired architecture alternating strong and weak interfaces.  相似文献   
40.
Y2Hf2O7 possesses low thermal conductivity and high melting point, which make it promising for a new anti-ablation material. For evaluating the thermal stability and the potential applications of Y2Hf2O7 on anti-ablation protection of C/C composites, Y2Hf2O7 ceramic powder was synthesized by solution combustion method and Y2Hf2O7 coating was prepared on the surface of SiC coated C/C composites using SAPS. Results shown that the coating exhibits good ablation resistance under the heat flux of 2.4?MW/m2 with the linear and mass ablation rates are 0.16?μm?s?1 and ?0.028?mg?s?1, respectively, after ablation for 40?s. With the prolonging of the ablation time, the increasing thermal stress causes the increase of cracks. Moreover, the chemical erosion from SiO2 and the physical volatilization of low temperature molten products aggravate failure of the Y2Hf2O7 coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号