首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57566篇
  免费   4074篇
  国内免费   1640篇
电工技术   1415篇
技术理论   1篇
综合类   2849篇
化学工业   12777篇
金属工艺   4341篇
机械仪表   2153篇
建筑科学   1263篇
矿业工程   410篇
能源动力   1289篇
轻工业   14272篇
水利工程   140篇
石油天然气   760篇
武器工业   233篇
无线电   4307篇
一般工业技术   6561篇
冶金工业   1039篇
原子能技术   698篇
自动化技术   8772篇
  2024年   201篇
  2023年   772篇
  2022年   1231篇
  2021年   2393篇
  2020年   1349篇
  2019年   1433篇
  2018年   1214篇
  2017年   1531篇
  2016年   1706篇
  2015年   2126篇
  2014年   2982篇
  2013年   3074篇
  2012年   3469篇
  2011年   5031篇
  2010年   3961篇
  2009年   4047篇
  2008年   3612篇
  2007年   3929篇
  2006年   3382篇
  2005年   2886篇
  2004年   2474篇
  2003年   2306篇
  2002年   1943篇
  2001年   1104篇
  2000年   881篇
  1999年   789篇
  1998年   544篇
  1997年   464篇
  1996年   417篇
  1995年   332篇
  1994年   324篇
  1993年   262篇
  1992年   245篇
  1991年   164篇
  1990年   129篇
  1989年   128篇
  1988年   77篇
  1987年   76篇
  1986年   60篇
  1985年   62篇
  1984年   43篇
  1983年   15篇
  1982年   13篇
  1981年   8篇
  1980年   39篇
  1979年   9篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
71.
The paper proposes a limit analysis approach to define the ultimate load capacity of orthotropic composite laminates under biaxial loading and plane stress conditions. A lower bound to the collapse load multiplier is computed by solving a maximization nonlinear problem, according to the static theorem of limit analysis. To set up the optimization problem a stress field distribution is hypothesized at lamina level, moreover inter-lamina stresses are also considered. The effectiveness and validity of the proposed approach is shown by comparing the obtained numerical predictions both with available experimental data and with other numerical results carried out by means of a different numerical lower bound approach.  相似文献   
72.
The use of proteins as therapeutics has a long history and is becoming ever more common in modern medicine. While the number of protein-based drugs is growing every year, significant problems still remain with their use. Among these problems are rapid degradation and excretion from patients, thus requiring frequent dosing, which in turn increases the chances for an immunological response as well as increasing the cost of therapy. One of the main strategies to alleviate these problems is to link a polyethylene glycol (PEG) group to the protein of interest. This process, called PEGylation, has grown dramatically in recent years resulting in several approved drugs. Installing a single PEG chain at a defined site in a protein is challenging. Recently, there is has been considerable research into various methods for the site-specific PEGylation of proteins. This review seeks to summarize that work and provide background and context for how site-specific PEGylation is performed. After introducing the topic of site-specific PEGylation, recent developments using chemical methods are described. That is followed by a more extensive discussion of bioorthogonal reactions and enzymatic labeling.  相似文献   
73.
74.
The determination of a protein''s folding nucleus, i.e. a set of native contacts playing an important role during its folding process, remains an elusive yet essential problem in biochemistry. In this work, we investigate the mechanical properties of 70 protein structures belonging to 14 protein families presenting various folds using coarse-grain Brownian dynamics simulations. The resulting rigidity profiles combined with multiple sequence alignments show that a limited set of rigid residues, which we call the consensus nucleus, occupy conserved positions along the protein sequence. These residues'' side chains form a tight interaction network within the protein''s core, thus making our consensus nuclei potential folding nuclei. A review of experimental and theoretical literature shows that most (above 80%) of these residues were indeed identified as folding nucleus member in earlier studies.  相似文献   
75.
This paper presents an experimental study of low velocity impact response of carbon/epoxy asymmetrically tapered laminates. The tests are realised at energy between 10 and 30 J on two types of layup with multiple terminated plies. The type and localisation of damage are analysed using C-scan and micrographs. Then, the data is compared with the response of corresponding respective plain laminate. The effects of some tapering parameters (taper angle, drop-off disposition and configuration) on the impact damage mechanisms are also investigated. Very similar impact damage phenomena are found between tapered and plain laminates. The presence of material discontinuity due to the resin pocket affects less the damage mechanism than the structural difference between the thick and the thin sections.  相似文献   
76.
In this paper, novel morphology correlation between silver nanowires (AgNWs) and cobalt (Co)-doped ZnO (Co-ZnO) flake-like thin films (nanowire/flake-like) has been proposed for enhanced photoelectrochemical (PEC) water splitting activity. Here in, high-quality AgNWs/Co-ZnO heterostructures enabled superior visible light water splitting activity compared to the pure ZnO and AgNWs/ZnO. To address the strategic effect of AgNWs coupling and transition metal (Co-2?at%) doping into the ZnO host lattice, we have carried out the X-ray diffraction, field emission scanning microscopy, X-ray photoelectron spectroscopy, UV–Vis transmittance, water contact angle and PEC analyses. In this way, PEC water splitting activity was mainly examined by linear sweep voltammetry (I-V), amperometric I-t and photoconversion efficiency (η) studies. The experimental results provide clear evidence of morphology correlation between AgNWs and Co-ZnO flake-like structures for strong visible light absorption. Specifically, AgNWs/Co-ZnO composites exhibited significant enhancement in the photocurrent density (7.0?×?10?4 A/cm2) than AgNWs/ZnO (3.2?×?10?4 A/cm2) and pure ZnO (1.5?×?10?6 A/cm2). As a result, detailed AgNWs/Co-ZnO geometry has great potential for photoconversion efficiency (0.73%). In a word, the merits of controllable AgNWs/Co-ZnO heterostructure are proposed to improve the visible light harvesting and charge carrier generation for energy conversion devices.  相似文献   
77.
Structures and properties of myofibrillar protein gel prepared at different power (300–800 W) were evaluated. Amino acid analysis demonstrated that changes in microwave power did not alter primary structure of gel. However, an increase in microwave power could change higher structures of gel. As microwave power increased, α-helix content decreased and β-sheet content increased. Increased microwave power probably facilitated protein to unfold and expose the internal groups, causing surface hydrophobicity and the formation of disulphide bonds were enhanced, which indicated changes in tertiary and quaternary structures of protein. At 500 W, gel had the best ultrastructure where surface morphology, springiness and water holding capacity reached the optimum. Our findings suggested that microwave at an appropriate power (500 W) could change higher structures of myofibrillar protein gel to achieve desired processing and quality protein gel characteristics.  相似文献   
78.
The main aim of this work is dual computer analysis of probabilistic coefficients for the homogenized tensor of the polymer filled with the rubber particles having randomized Poisson ratios of both constituents. The major issue is to verify an influence of a randomness in rubber Poisson ratio close to the compressibility limit on the uncertainty of the effective tensor probabilistic characteristics. Probabilistic analysis presented here is carried out using mainly the stochastic perturbation technique provided by the common application of the traditional FEM commercial code ABAQUS and the symbolic computations package MAPLE. This FEM-based technique employs polynomial response function of the optimum order recovered from the weighted least squares method and following a set of deterministic solutions obtained for various values of the randomized input parameter. Optimization procedure is released entirely into a symbolic environment, where maximization of the correlation factor together with minimization of the fitting variance and approximation error are applied. Homogenization technique consists in equating of deformation energies for the real composite and the artificial one characterized by the effective elasticity tensor with uncertainty.  相似文献   
79.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
80.
丁小波 《电子科技》2015,28(4):142-145
介绍了一种基于高性能浮点DSP芯片TMS320C32、CPLD芯片XC95288和A/D采样芯片AD976组成的多路采集系统的工作原理以及设计方法。通过对第一路施加特殊的电压量,在CCS开发环境下读取采样缓冲区的值,并利用Matlab对采样数据进行了全波傅氏变换。此外,该系统已在继电保护中得到广泛应用,实践表明,该系统能较好地解决多路模拟量的采集,并确保了采样数据的安全可靠性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号