首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75334篇
  免费   8382篇
  国内免费   3286篇
电工技术   1633篇
技术理论   1篇
综合类   3279篇
化学工业   27440篇
金属工艺   12040篇
机械仪表   1529篇
建筑科学   1889篇
矿业工程   1073篇
能源动力   1544篇
轻工业   9365篇
水利工程   333篇
石油天然气   1191篇
武器工业   362篇
无线电   3225篇
一般工业技术   17631篇
冶金工业   3121篇
原子能技术   310篇
自动化技术   1036篇
  2024年   411篇
  2023年   1883篇
  2022年   2486篇
  2021年   3467篇
  2020年   3283篇
  2019年   2829篇
  2018年   3043篇
  2017年   3492篇
  2016年   3513篇
  2015年   3613篇
  2014年   4263篇
  2013年   5404篇
  2012年   4911篇
  2011年   5958篇
  2010年   4018篇
  2009年   4365篇
  2008年   3589篇
  2007年   3973篇
  2006年   3795篇
  2005年   2973篇
  2004年   2915篇
  2003年   2466篇
  2002年   2003篇
  2001年   1397篇
  2000年   1258篇
  1999年   963篇
  1998年   862篇
  1997年   726篇
  1996年   536篇
  1995年   483篇
  1994年   349篇
  1993年   261篇
  1992年   265篇
  1991年   204篇
  1990年   253篇
  1989年   245篇
  1988年   90篇
  1987年   62篇
  1986年   66篇
  1985年   71篇
  1984年   71篇
  1983年   34篇
  1982年   57篇
  1981年   7篇
  1980年   37篇
  1979年   6篇
  1978年   6篇
  1975年   6篇
  1974年   6篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
MgAl2-2xMn2xO4 (MAMO) with x = 0-0.12 was synthesized in a single-phase form by solid-state reaction. XRD analysis showed that the samples had the cubic center structure of the Fd-3 m space group. Electrical properties of the samples were studied over the temperature range of 300 K∼1073 K. The results showed that the DC conductivity (σDC) increased from 10−11S/cm at 300 K (MAMO, x = 0) to 10-3S/cm at 1073 K (MAMO, x = 0.12). The equivalent circuit of the complex impedance spectra suggested that the relaxation of charge carriers was of non-Debye type. The conduction was mainly caused by grain boundaries and the capacitance was mainly attributed to polarization. The complex permittivity values (ε’ and ε’’) were increased by two orders of magnitude with the increase in Mn content and temperature over the measured frequency range (1 Hz-1 MHz). Therefore, doping with Mn could be applied to modify the electrical properties of MAMO at high temperature.  相似文献   
92.
《Ceramics International》2022,48(3):3652-3658
Digital light processing (DLP) is one of the most important additive manufacture technologies to fabricate ceramic parts with complex geometries. Compared with pure photosensitive resin, the cure performance of ceramic suspensions is obviously different due to the optical property change after the addition of ceramic powders. In this paper, a unique oxidation process was used to modify the optical properties of nitride powders including AlN and Si3N4. The properties of oxidized ceramics were investigated and the cure performance of ceramic suspensions was then characterized. The effect of oxidation time on cure performance was evaluated. The results showed that for AlN, oxidation process leads to the smaller cure depth and smaller excess cure width as compared with non-oxidized AlN and for Si3N4, oxidation process leads to the larger cure depth and larger excess cure width as compared with non-oxidized Si3N4, indicating that both refractive index and light absorbance of ceramic powders have obvious effects on cure behaviors. Additionally, the cure behavior of oxidized ceramic suspension in this study shows that the relationship of cure depth vs. incident energy agrees well with Beer- Lambert model, but the excess cure width vs. incident energy is not consistent with quasi Beer-Lambert model due to the nature of digital micromirror device (DMD).  相似文献   
93.
《Ceramics International》2022,48(18):26022-26027
Aluminum nitride (AlN) is used a ceramic heater material for the semiconductor industry. Because extremely high temperatures are required to achieve dense AlN components, sintering aids such as Y2O3 are typically added to reduce the sintering temperature and time. To further reduce the sintering temperature, in this study, a low-melting-temperature glass (MgO–CaO–Al2O3–SiO2; MCAS) was used as a sintering additive for AlN. With MCAS addition, fully dense AlN was obtained by hot-press sintering at 1500 °C for 3 h at 30 MPa. The mechanical properties, thermal conductivity, and volume resistance of the sintered AlN–MCAS sample were evaluated and compared with those of a reference sample (AlN prepared with 5 wt% Y2O3 sintering aid sintered at 1750 °C for 8 h at 10 MPa). The thermal conductivity of AlN prepared with 0.5 wt% MCAS was 91.2 W/m?K, which was 84.8 W/m?K lower than that of the reference sample at 25 °C; however, the difference in thermal conductivity between the samples was only 14.2 W/m?K at the ceramic-heater operating temperature of 500 °C. The flexural strength of AlN–MCAS was 550 MPa, which was higher than that of the reference sample (425 MPa); this was attributed to the smaller grain size achieved by low-temperature sintering. The volume resistance of AlN–MCAS was lower than that of the reference sample in the range of 200–400 °C. However, the resistivity of the proposed AlN–MCAS sample was higher than that of the reference sample (500 °C) owing to grain-boundary scattering of phonons. In summary, the proposed sintering strategy produces AlN materials for heater applications with low production cost, while achieving the properties required by the semiconductor industry.  相似文献   
94.
Improving piezoelectric performance is always favorable to further enhance the sensitivity and accuracy of piezoelectric devices. Here, a complex piezoelectric system of Pb(Ni1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-Pb(Hf0.1Ti0.9)O3 is designed and investigated in detail. Optimized piezoelectric response of ~ 880 pC/N is achieved at the composition of 0.51PNN-0.09PYN-0.40PHT. The characterization of TEM and In-situ high-energy synchrotron diffraction indicate that nanodomain growth and microdomain switching occurs in succession at around coercive electric field. Most interestingly, the coexisted tetragonal and rhombohedral-like phase transforms into multiple monoclinic-like phases with polarization vectors aligned as close to the electric field direction as possible under the strong electric field. The enhanced polarization instability in this complex morphotropic phase boundary sample should be ascribed to the strong local heterogeneity. The novel polarization rotation behavior found in this work would be important guidance for designing high-performance piezoceramics.  相似文献   
95.
96.
《Ceramics International》2022,48(8):10885-10894
Lead-free bismuth sodium titanate-strontium titanate (NBT-ST) dielectric ceramic materials have been extensively investigated energy storage materials because of their relaxor characteristics. In this study, four different lanthanide elements were introduced into the ferroelectric NBT-ST ceramic to improve their relaxor properties. The introduction of the lanthanide resulted in an increase in disorder at location A within the perovskite lattice and improved relaxor characteristics, leading to a stored energy density of more than 3.5 J/cm3. In particular, an ultrahigh recoverable stored energy density of 4.94 J/cm3 and efficiency of 88.45% were achieved at 440 kV/cm when the NBT-ST ceramic was modified with neodymium. The modified ceramic also exhibited good thermal stability in the range of 30–120 °C, as well as a fast discharge time of ~153 ns, indicating that Nd-incorporated NBT-ST is a promising candidate for electrical energy storage ceramic.  相似文献   
97.
The demand for food production has been constantly increasing due to rising population. In developed countries, for example, the emergence of regional production of old grains that are rarely utilized, along with the production of commonly consumed grains, has gained importance in recent years. These grains, known collectively as ancient or heirloom grains, have offered both farmers and consumers novel ways of cultivation and products with interesting taste, characteristics and nutritional value. Among the 30 000 plant species known, only five cereals currently provide more than 50% of the world's energy intake – bread wheat (Triticum aestivum), rice (Oryza sativa), sorghum (Sorghum bicolor), millets (Panicum sp.) and maize (Zea mays). The excessive utilization of these selected species has a great potential to cause genetic losses and difficulty in bridging future agricultural demands. Teff (Eragrostis tef), an ancient grain extensively cultivated in countries like Eritrea and Ethiopia, provides promising alternatives for new food uses since its nutritional value is significantly higher than most others cereal grains. The absence of gluten allows flexibility in food utilization since it can be directly substituted to gluten-containing products. The grain also offers an excellent balance of essential amino acids and minerals, which can fulfil the recommended daily intake and eliminates the need for fortification and enrichment. This review provides a general overview of the physical properties and nutritional composition of teff grains related to processing and applications in the food and feed industries. The current status of teff utilization, as well as the challenges in production and commercialization, and future opportunities is presented and discussed.  相似文献   
98.
《Ceramics International》2021,47(23):33259-33268
The demand for high-performance grinding wheels is gradually increasing due to rapid industrial development. Vitrified bond diamond composite is a versatile material for grinding wheels used in the backside grinding step of Si wafer production. However, the properties of the vitrified bond diamond composite are controlled by the characteristics of the diamond particles, the vitrified bond, and pores and are very complicated. The main objective of this study was to investigate the effects of SiO2–Na2O–B2O3–Al2O3–Li2O–K2O–CaO–MgO–ZrO2–TiO2–Bi2O3 glass powder on the sintering, microstructure, and mechanical properties of the vitrified bond diamond composite. The elemental distributions of the composite were analyzed using electron probe micro-analysis (EPMA) to clarify the diffusion behaviors of various elements during sintering.The results showed that the relative density and transverse rupture strength of the composite sintered at 620 °C were 91.7% and 126 MPa, respectively. After sintering at 680 °C, the glass powder used in this study exhibited a superior forming ability without an additional pore foaming agent. The relative density and transverse rupture strength of the composite decreased to 48.2% and 49 MPa, respectively. Moreover, the low sintering temperature of this glass powder protected the diamond particles from graphitization during sintering, as determined by X-ray diffraction and Raman spectrum. Furthermore, the EPMA results indicate that Na diffused and segregated at the interface between the diamond particles and vitrified bond, contributing to the improved bonding. The diamond particles can remain effectively bonded by the vitrified bond even after fracture.  相似文献   
99.
《Ceramics International》2022,48(5):6208-6217
Three different coatings, namely TiAlN, TiAlN (external)/NbN (internal) and NbN (external)/TiAlN (internal), were deposited on cemented carbides by arc ion plating. The comparative investigation conducted in this study elucidates the effect of the NbN layer and coating systems on the growth, mechanical properties, and tribological performance of the coatings. The results showed that the surface of the TiAlN and TiAlN/NbN coatings was smoother when TiAlN served as the external layer. The NbN/TiAlN coating, wherein NbN formed the external layer, had a much rougher but more symmetrical surface. With the introduction of the NbN layer, the increased micro stress induced a lower adhesion strength in the TiAlN/NbN and NbN/TiAlN coatings. The TiAlN/NbN and NbN/TiAlN coatings exhibited higher hardness and hardness/effective elastic modulus (H/E*). During the friction test, when the temperature was elevated to 700 °C, the tribological performance of the monolayer TiAlN coating was the lowest because of the TiO2-induced breakage of the dense tribo-oxide film. The NbN layer participated in the formation of a NbOx film at elevated temperatures, which was responsible for the high tribological performance of the two bilayer coatings. When the NbN layer was on the outermost layer and in direct contact with the elevated temperature atmosphere, the NbN/TiAlN coating generated a tribo-oxide film with high integrity, and its coefficient of friction decreased by 27% of that at room temperature. Therefore, the NbN/TiAlN coating exhibited the highest wear resistance at 700 °C.  相似文献   
100.
The Fe−Ni−TiO2 nanocomposite coatings were electrodeposited by pulse frequency variation. The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies. By increasing the pulse frequency from 10 to 500 Hz, the iron and TiO2 nanoparticles contentswere increased in expense of nickel content. XRD patterns showed that by increasing the frequency to 500 Hz, an enhancement ofBCC phase was observed and the grain size of deposits was reduced to 35 nm. The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO2 nanoparticles into the Fe−Ni matrix (5.13 wt.%). Moreover, the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号