首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3251篇
  免费   453篇
  国内免费   312篇
电工技术   595篇
综合类   376篇
化学工业   386篇
金属工艺   217篇
机械仪表   315篇
建筑科学   312篇
矿业工程   77篇
能源动力   107篇
轻工业   71篇
水利工程   79篇
石油天然气   55篇
武器工业   20篇
无线电   409篇
一般工业技术   497篇
冶金工业   93篇
原子能技术   32篇
自动化技术   375篇
  2024年   8篇
  2023年   52篇
  2022年   80篇
  2021年   118篇
  2020年   109篇
  2019年   108篇
  2018年   106篇
  2017年   134篇
  2016年   140篇
  2015年   166篇
  2014年   236篇
  2013年   253篇
  2012年   249篇
  2011年   238篇
  2010年   187篇
  2009年   212篇
  2008年   185篇
  2007年   209篇
  2006年   181篇
  2005年   142篇
  2004年   113篇
  2003年   111篇
  2002年   98篇
  2001年   87篇
  2000年   74篇
  1999年   65篇
  1998年   52篇
  1997年   49篇
  1996年   35篇
  1995年   27篇
  1994年   27篇
  1993年   32篇
  1992年   27篇
  1991年   26篇
  1990年   15篇
  1989年   15篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1965年   2篇
  1959年   2篇
  1958年   1篇
  1956年   1篇
  1955年   1篇
  1954年   2篇
排序方式: 共有4016条查询结果,搜索用时 259 毫秒
81.
针对粒子滤波算法在故障预报中的大计算量和粒子退化问题,提出一种基于随机摄动粒子滤波器的故障预报算法.当粒子退化严重时,对粒子用随机摄动方式进行再采样,一方面可改进样本的多样性,缓解粒子退化;另一方面可缩短再采样时间,减少计算量,从而提高粒子滤波算法的跟踪能力.仿真结果表明该算法可行,能及时准确地对系统故障进行预报.  相似文献   
82.
We report extensive magnetization measurements on single crystals of Tl2Ba2CuO6 superconductors. The fishtail magnetization is found to disappear above a characteristic temperature (60 K), which corresponds to a crossover temperature in the temperature dependence of the irreversibility line. Since the low temperature irreversibility field can be modeled by a Josephson coupled layered system, we propose that the fishtail magnetization in the Tl2Ba2CuO6 system is due to dimensional crossover.  相似文献   
83.
针对逆变器死区带来的控制精度下降、谐波含量增加等问题,提出一种基于定频滞环控制的死区补偿策略。介绍一种对相间电流误差进行控制的定频滞环控制方法,并利用扩张状态观测器对其中的扇区判断方法进行改进。通过开关动作前后的电流路径,分析出死区期间误差会超出滞环宽度上限或下限。实时计算误差超出环宽的幅度,调整实际环宽,使误差恰好符合预期环宽,达到死区补偿的目的。对基于定频滞环控制的逆变器进行仿真,证明了所提策略可以对死区进行精确补偿。  相似文献   
84.
Na superionic conductor of Na3MnTi(PO4)3 only containing high earth-abundance elements is regarded as one of the most promising cathodes for the applicable Na-ion batteries due to its desirable cycling stability and high safety. However, the voltage hysteresis caused by Mn2+ ions resided in Na+ vacancies has led to significant capacity loss associated with Mn reaction centers between 2.5–4.2 V. Herein, the sodium excess strategy based on charge compensation is applied to suppress the undesirable voltage hysteresis, thereby achieving sufficient utilization of the Mn2+/Mn3+ and Mn3+/Mn4+ redox couples. These findings indicate that the sodium excess Na3.5MnTi0.5Ti0.5(PO4)3 cathode with Ti4+ reduction has a lowest Mn2+ occupation on the Na+ vacancies in its initial composition, which can improve the kinetics properties, finally contributing to a suppressed voltage hysteresis. Based on these findings, it is further applied the sodium excess route on a Mn-richer phosphate cathode, which enables the suppressed voltage hysteresis and more reversible capacity. Consequently, this developed Na3.6Mn1.15Ti0.85(PO4)3 cathode achieved a high energy density over 380 Wh kg−1 (based on active substance mass of cathode) in full-cell configurations, which is not only superior to most of the phosphate cathodes, but also delivers more application potential than the typical oxides cathodes for Na-ion batteries.  相似文献   
85.
Ionic conductive soft materials for mimicking human skin are a promising topic since they can be thought of as a possible basis for biomimetic sensing. In pursuit of devices with a long working range and low signal delay, conductive materials with low hysteresis and good stretchability are highly demanded. To overcome the challenges of highly stretchable conductive materials with good resilience, herein a chemical design is proposed where polyrotaxanes act as topological cross-linkers to enhance the stretchability by sliding-induced reduced stress concentration while the compatible ionic liquid is introduced as a dispersant for low hysteresis. The obtained ionogels exhibit versatile properties more than low hysteresis (residual strain = 7%) and good stretchability (550%), and also anti-fatigue, biocompatibility, and good adhesion. The low hysteresis is attributed to lower energy dissipation from the well-dispersed polyrotaxanes by compatible ionic liquids. The mechanism provides a new insight in fabricating highly stretchable and low-hysteresis slide-ring materials. Furthermore, the conductivity of the ionogels and their responses to strains and temperatures are measured. Benefiting from the good conductivity and low hysteresis, the ionogel is applied to develop a wireless communication system to realize rapid human-machine interactions.  相似文献   
86.
To control a nonlinear system with both hysteresis and disturbance, it is necessary to establish a hysteresis model and improve the disturbance rejection ability. However, the input signal implicitly involved in the classical hysteresis model can lead to difficulty in constructing a compensator. In this study, a hysteresis model in explicit form is proposed with a bounded auxiliary variable. Then, a model-based inverse is constructed for approximate compensation for the hysteresis. Moreover, the compensation error, which is considered a part of the disturbance, is proved to be bounded. Disturbance estimation triggered control (DETC) is utilized to address the compensation error coupled with the external disturbance. According to the disturbance effect indicator (DEI), DETC can improve the system control performance by considering the disturbance effect judgment. Experimental results are presented to illustrate the potential of the proposed technique.  相似文献   
87.
Since the hysteresis property inherently exists in the rubber material, it is necessary to deal with the control issues for the micro-hand by considering the hysteresis property. Therefore, in this paper, the robust tracking control for the micro-hand systems is discussed from the aspect of the Prandtl–Ishlinskii hysteresis property which is more applicable for the real applications. Firstly, a new model is obtained by combining the dynamic model of the micro-hand with Prandtl–Ishlinskii hysteresis property. Secondly, a new stability condition based on bounded input and bounded output stability is proposed for the Prandtl–Ishlinskii hysteresis modeled micro-hand system from two different cases. Thirdly, by designing the robust controllers based on the internal model control method, the tracking performance can be improved by eliminating the effect from the disturbance. Finally, simulation is used to further demonstrate the effectiveness of the proposed design scheme.  相似文献   
88.
As one of the most promising photovoltaic materials, the efficiency of inorganic–organic hybrid halide perovskite solar cells (PSCs) has reached 25.5% in 2020. However, the stability and hysteresis remain primary challenges before it can become a commercial photovoltaic technology. Therefore, those issues have drawn significant attention for photovoltaic applications. In this work, a study of the PSCs hysteresis improvement is presented based on a combination of first-principles simulations, scanning electron microscopy images, and time-dependent photocurrent measurements. It indicates the hysteresis led by the ion migration and accumulation is mainly localized at the two interfaces: one is between electron transport layer and active layer, and the other is between active layer and hole transport layer. Considering the massive defects at the grain boundaries (GBs), they lower the potential barriers significantly. The defect density at GBs is therefore reduced via the in situ passivation of PbI2 crystals. The hysteresis index is decreased from 22.43% down to 1.04%, and results in an improvement in efficiency from 17.12% up to 20.10%. Following the understanding of defect-induced hysteresis, an approach to improve the hysteresis is provided, which can be integrated into the fabrication process and widely applied to enhance the performance of PSCs.  相似文献   
89.
Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current–voltage hysteresis. Herein, it is reported that yttrium‐doped tin dioxide (Y‐SnO2) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO2 ESLs: (1) it promotes the formation of well‐aligned and more homogeneous distribution of SnO2 nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO2 nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y‐SnO2 NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO2 NSA ESLs. The champion cell using Y‐SnO2 NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady‐state efficiency of 16.25%. The results suggest that low‐temperature hydrothermal‐synthesized Y‐SnO2 NSA is a promising ESL for fabricating efficient and hysteresis‐less PSC.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号