首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2144篇
  免费   39篇
  国内免费   125篇
电工技术   18篇
综合类   48篇
化学工业   1305篇
金属工艺   300篇
机械仪表   45篇
建筑科学   11篇
矿业工程   13篇
能源动力   16篇
轻工业   56篇
水利工程   1篇
石油天然气   51篇
武器工业   12篇
无线电   27篇
一般工业技术   128篇
冶金工业   222篇
原子能技术   12篇
自动化技术   43篇
  2023年   5篇
  2022年   16篇
  2021年   742篇
  2020年   83篇
  2019年   23篇
  2018年   27篇
  2017年   37篇
  2016年   94篇
  2015年   131篇
  2014年   140篇
  2013年   106篇
  2012年   108篇
  2011年   94篇
  2010年   52篇
  2009年   56篇
  2008年   41篇
  2007年   57篇
  2006年   41篇
  2005年   63篇
  2004年   46篇
  2003年   42篇
  2002年   51篇
  2001年   50篇
  2000年   38篇
  1999年   36篇
  1998年   23篇
  1997年   25篇
  1996年   19篇
  1995年   14篇
  1994年   7篇
  1993年   8篇
  1992年   15篇
  1991年   10篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
排序方式: 共有2308条查询结果,搜索用时 93 毫秒
991.
The p38α mitogen-activated protein kinase (MAPK) has become an attractive target for the treatment of many diseases such as rheumatoid arthritis, inflammatory bowel disease and Crohn's disease. In this paper, 3D-QSAR and molecular docking studies were performed on 59 p38α MAPK inhibitors. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to determine the structural requirements for potency in inhibiting p38α MAPK. The resulting model of CoMFA and CoMSIA exhibited good r(2) (cv) values of 0.725 and 0.609, and r(2) values of 0.961 and 0.905, respectively. Molecular docking was used to explore the binding mode between the inhibitors and p38α MAPK. We have accordingly designed a series of novel p38α MAPK inhibitors by utilizing the structure-activity relationship (SAR) results revealed in the present study, which were predicted with excellent potencies in the developed models. The results provided a useful guide to design new compounds for p38α MAPK inhibitors.  相似文献   
992.
993.
Combined curcumin and PS-341 treatment has been reported to enhance cytotoxicity and minimize adverse effects through ERK and p38MAPK mechanisms in human multiple myeloma cells. However, whether JNK plays similar role in this process remains unclear. In the present study, we found combined treatment altered NF-κB p65 expressions and distributions in multiple myeloma H929 cells. Western blot analysis showed combined treatment inactivated NF-κB while activated JNK signaling. Pre-treatment with JNK inhibitor SP600125 could attenuate NF-κB inactivation and restored H929 cells' survival. These results suggested that curcumin might enhance the cytotoxicity of PS-341 by interacting with NF-κB, at least in part, through JNK mechanism.  相似文献   
994.
Metformin, an anti-diabetic drug, exerts cardioprotection against ischemia-reperfusion (IR) through the activation of AMPK. However, the molecular mechanisms underlying these beneficial effects remain elusive. In this study, we examined the role of PPARα in mediating cardioprotective effects of metformin on mitochondria. Hearts of male Sprague-Dawley rats perfused by Langendorff were subjected to IR in the presence or absence of metformin and the PPARβ inhibitor, GW6471. IR reduced cardiac function and compromised the structural integrity of cardiac cells evidenced by increased LDH release from the hearts. In addition, IR induced mitochondrial dysfunction as evidenced by reduced respiration and increased mitochondrial permeability transition pore (PTP) opening. However, metformin-treated hearts demonstrated improved post-ischemic recovery of cardiac function and reduced cell death that were associated with increased state 3 respiration at complexes I and II (by 27% and 32%, respectively, both p < 0.05) and decreased PTP opening (by 27%, p < 0.05) compared to untreated hearts. The protective effects of metformin on cardiac function and mitochondria were blocked by GW6471. Thus, our results demonstrate that inhibition of PPARα attenuates the beneficial effects of metformin on mitochondria in acute IR.  相似文献   
995.
The hypercholesterolemia-atherosclerosis association is now established; hypercholesterolemia may induce vascular-cell activation, subsequently increasing expression of adhesion molecules, cytokines, chemokines, growth factors, and other key inflammatory molecules. Among inflammatory molecules expressed by vascular cells, integrins play a critical role in regulating macrophage activation and migration to the site of inflammation, by mediating cell-cell and cell-extracellular matrix interactions. The main lipid oxidation products present in oxidized LDL that may be responsible for inflammatory processes in atherogenesis, are cholesterol oxidation products, known as oxysterols. This study demonstrates the effect of an oxysterol mixture, compatible with that detectable in human hypercholesterolemic plasma, on the expression and synthesis of β1-integrin in cells of the macrophage lineage. The molecular signaling whereby oxysterols induce β1-integrin up-regulation is also comprehensively investigated. Over-expression of β1-integrin depends on activation of classic and novel members of protein kinase C and extracellular signal-regulated kinases 1 and 2, as well as of the up-stream G-protein (Gq and G13), c-Src, and phospholipase C. In addition, the localization of β1-integrin in advanced human carotid plaques is highlighted, marking its importance in atherosclerotic plaque progression.  相似文献   
996.
The life of any living organism can be defined as a hurdle due to different kind of stresses. As with all living organisms, plants are exposed to various abiotic stresses, such as drought, salinity, extreme temperatures and chemical toxicity. These primary stresses are often interconnected, and lead to the overproduction of reactive oxygen species (ROS) in plants, which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA, which ultimately results in oxidative stress. Stress-induced ROS accumulation is counteracted by enzymatic antioxidant systems and non-enzymatic low molecular weight metabolites, such as ascorbate, glutathione and α-tocopherol. The above mentioned low molecular weight antioxidants are also capable of chelating metal ions, reducing thus their catalytic activity to form ROS and also scavenge them. Hence, in plant cells, this triad of low molecular weight antioxidants (ascorbate, glutathione and α-tocopherol) form an important part of abiotic stress response. In this work we are presenting a review of abiotic stress responses connected to these antioxidants.  相似文献   
997.
Alzheimer's disease (AD) is characterized by the abnormal aggregation of amyloid-β peptide (Aβ) in extracellular deposits known as senile plaques. The tyrosine residue (Tyr-10) is believed to be important in Aβ-induced neurotoxicity due to the formation of tyrosyl radicals. To reduce the likelihood of cross-linking, here we designed an Aβ-40 analogue (Aβ-40 Y10F) in which the tyrosine residue was substituted by a structurally similar residue, phenylalanine. The aggregation rate was determined by the Thioflavin T (ThT) assay, in which Aβ-40 Y10F populated an ensemble of folded conformations much quicker and stronger than the wild type Aβ. Biophysical tests subsequently confirmed the results of the ThT assay, suggesting the measured increase of β-aggregation may arise predominantly from enhancement of hydrophobicity upon substitution and thus the propensity of intrinsic β-sheet formation. Nevertheless, Aβ-40 Y10F exhibited remarkably decreased neurotoxicity compared to Aβ-40 which could be partly due to the reduced generation of hydrogen peroxide. These findings may lead to further understanding of the structural perturbation of Aβ to its fibrillation.  相似文献   
998.
Arsenic trioxide has been reported to inhibit cell growth and induce apoptotic cell death in many human cancer cells including breast cancer. However, the precise molecular mechanisms underlying the anti-tumor activity of arsenic trioxide are still largely unknown. In the present study, we assessed the effects of arsenic trioxide on cell viability and apoptosis in breast cancer cells. For mechanistic studies, we used multiple cellular and molecular approaches such as MTT assay, apoptosis ELISA assay, gene transfection, RT-PCR, Western blotting, and invasion assays. For the first time, we found a significant reduction in cell viability in arsenic trioxide-treated cells in a dose-dependent manner, which was consistent with induction of apoptosis and also associated with down-regulation of Notch-1 and its target genes. Taken together, our findings provide evidence showing that the down-regulation of Notch-1 by arsenic trioxide could be an effective approach, to cause down-regulation of Bcl-2, and NF-κB, resulting in the inhibition of cell growth and invasion as well as induction of apoptosis. These results suggest that the anti-tumor activity of arsenic trioxide is in part mediated through a novel mechanism involving inactivation of Notch-1 and its target genes. We also suggest that arsenic trioxide could be further developed as a potential therapeutic agent for the treatment of breast cancer.  相似文献   
999.
We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H(50)) or in vivo mouse intraperitoneal (ip) LD(50) using reported data for α,β-unsaturated carbonyl compounds such as (meth)acrylate monomers and their (13)C-NMR β-carbon chemical shift (δ). The log 1/H(50) value for methacrylates was linearly correlated with the δC(β) value. That for (meth)acrylates was linearly correlated with log P, an index of lipophilicity. The ipLD(50) for (meth)acrylates was linearly correlated with δC(β) but not with log P. For (meth)acrylates, the δC(β) value, which is dependent on the π-electron density on the β-carbon, was linearly correlated with PM3-based theoretical parameters (chemical hardness, η; electronegativity, χ; electrophilicity, ω), whereas log P was linearly correlated with heat of formation (HF). Also, the interaction between (meth)acrylates and DPPC liposomes in cell membrane molecular models was investigated using (1)H-NMR spectroscopy and differential scanning calorimetry (DSC). The log 1/H(50) value was related to the difference in chemical shift (ΔδHa) (Ha: H (trans) attached to the β-carbon) between the free monomer and the DPPC liposome-bound monomer. Monomer-induced DSC phase transition properties were related to HF for monomers. NMR chemical shifts may represent a valuable parameter for investigating the biological mechanisms of action of (meth)acrylates.  相似文献   
1000.
Multidrug resistance (MDR) is considered the main cause of cancer chemotherapy failure and patient relapse. The active drug efflux mediated by transporter proteins of the ABC (ATP-binding cassette) family is the most investigated mechanism leading to MDR. With the aim of inhibiting this transport and circumventing MDR, a great amount of work has been dedicated to identifying pharmacological inhibitors of specific ABC transporters. We recently showed that 3β-acetyl tormentic acid (3ATA) had no effect on P-gp/ABCB1 activity. Herein, we show that 3ATA strongly inhibited the activity of MRP1/ABCC1. In the B16/F10 and Ma104 cell lines, this effect was either 20X higher or similar to that observed with MK571, respectively. Nevertheless, the low inhibitory effect of 3ATA on A549, a cell line that expresses MRP1-5, suggests that it may not inhibit other MRPs. The use of cells transfected with ABCC2, ABCC3 or ABCC4 showed that 3ATA was also able to modulate these transporters, though with an inhibition ratio lower than that observed for MRP1/ABCC1. These data point to 3ATA as a new ABCC inhibitor and call attention to its potential use as a tool to investigate the function of MRP/ABCC proteins or as a co-adjuvant in the treatment of MDR tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号