首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   41篇
综合类   1篇
化学工业   135篇
轻工业   15篇
无线电   19篇
一般工业技术   47篇
自动化技术   4篇
  2023年   11篇
  2022年   8篇
  2021年   25篇
  2020年   21篇
  2019年   23篇
  2018年   12篇
  2017年   10篇
  2016年   7篇
  2015年   5篇
  2014年   11篇
  2013年   10篇
  2012年   17篇
  2011年   17篇
  2010年   8篇
  2009年   8篇
  2008年   11篇
  2007年   8篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  1980年   1篇
排序方式: 共有221条查询结果,搜索用时 8 毫秒
61.
62.
Several anti‐HIV aptamers adopt DNA quadruplex structures. Among these, “Hotoda's aptamer” (base sequence TGGGAG) was one of the first to be discovered. Although it has been the topic of some recent research, no detailed structural investigations have been reported. Here we report structural investigations on this aptamer and analogues with related sequences, by using UV, CD, and NMR spectroscopy as well as electrophoretic techniques. The addition of a 3′‐end thymine has allowed us to obtain a single, investigable quadruplex structure. Data clearly point to the presence of an A‐tetrad. Furthermore, the effects of the incorporation of an 8‐methyl‐2′‐deoxyguanosine at the 5′‐end of the G‐run were investigated.  相似文献   
63.
Although RNA and DNA are best known for their capacity to encode biological information, it has become increasingly clear over the past few decades that these biomolecules are also capable of performing other complex functions, such as molecular recognition (e.g., aptamers) and catalysis (e.g., ribozymes). Building on these foundations, researchers have begun to exploit the predictable base-pairing properties of RNA and DNA in order to utilize nucleic acids as functional materials that can undergo a molecular “switching” process, performing complex functions such as signaling or controlled payload release in response to external stimuli including light, pH, ligand-binding and other microenvironmental cues. Although this field is still in its infancy, these efforts offer exciting potential for the development of biologically based “smart materials”. Herein, ongoing progress in the use of nucleic acids as an externally controllable switching material is reviewed. The diverse range of mechanisms that can trigger a stimulus response, and strategies for engineering those functionalities into nucleic acid materials are explored. Finally, recent progress is discussed in incorporating aptamer switches into more complex synthetic nucleic acid-based nanostructures and functionalized smart materials.  相似文献   
64.
Minimal residual disease (MRD) offers a highly independent prognostic factor for leukemia patients. However, challenges confronting conventional MRD assays are high invasiveness, as well as limited detection sensitivity and clinical applicability. Inspired by the self‐adaptive skeleton and multiple suckers or tendrils of climbing plants, a biomimetic Multivalent Aptamer Nanoclimber (MANC)‐functionalized microfluidic chip (MANC‐Chip) is reported for minimally invasive, highly sensitive and clinically applicable MRD detection in the peripheral blood of T‐cell acute lymphoblastic leukemia patients. The MANCs are synthesized by a simple co‐polymerization reaction. Due to their flexible structure and cooperative multivalent effect, MANCs dramatically enhance the binding affinity of aptamers targeting leukemia cells. A deterministic lateral displacement‐patterned microfluidic chip is designed to further increase the collision probability between MANCs and leukemia cells. Benefiting from the synergistic effect of multivalent binding and enhanced collision, a high capture efficiency of 92.2% for leukemia cells is achieved. Moreover, the captured leukemia cells can be released with high efficiency of 88.9% and high viability of 93.8% via nuclease treatment prior to downstream analysis. Overall, the excellent features of MANC‐Chip make it very useful for precise detection of MRD and better understanding of leukemia.  相似文献   
65.
66.
Functional nucleic acids (FNAs), including naturally occurring ribozymes and riboswitches as well as artificially created DNAzymes and aptamers, have been popular molecular toolboxes for diverse applications. Given the high chemical stability of nucleic acids and their ability to fold into diverse sequence-dependent structures, FNAs are suggested to be highly functional under unusual reaction conditions. This review will examine the progress of research on FNAs under conditions of low pH, high temperature, freezing conditions, and the inclusion of organic solvents and denaturants that are known to disrupt nucleic acid structures. The FNA species to be discussed include ribozymes, riboswitches, G-quadruplex-based peroxidase mimicking DNAzymes, RNA-cleaving DNAzymes, and aptamers. Research within this space has not only revealed the hidden talents of FNAs but has also laid important groundwork for pursuing these intriguing functional macromolecules for unique applications.  相似文献   
67.
Next‐generation‐sequencing (NGS) technologies enable us to obtain extensive information by deciphering millions of individual DNA sequencing reactions simultaneously. The new DNA‐sequencing strategies exceed their precursors in output by many orders of magnitude, resulting in a quantitative increase in valuable sequence information that could be harnessed for qualitative analysis. Sequencing on this scale has facilitated significant advances in diverse disciplines, ranging from the discovery, design, and evaluation of many small molecules and relevant biological mechanisms to maturation of personalized therapies. NGS technologies that have recently become affordable allow us to gain in‐depth insight into small‐molecule‐triggered biological phenomena and empower researchers to develop advanced versions of small molecules. In this review we focus on the overlooked implications of NGS technologies in chemical biology, with a special emphasis on small‐molecule development and screening.  相似文献   
68.
Herein, we have generated ssRNA aptamers to inhibit SARS-CoV-2 Mpro, a protease necessary for the SARS-CoV-2 coronavirus replication. Because there is no aptamer 3D structure currently available in the databanks for this protein, first, we modeled an ssRNA aptamer using an entropic fragment-based strategy. We refined the initial sequence and 3D structure by using two sequential approaches, consisting of an elitist genetic algorithm and an RNA inverse process. We identified three specific aptamers against SARS-CoV-2 Mpro, called MAptapro, MAptapro-IR1, and MAptapro-IR2, with similar 3D conformations and that fall in the dimerization region of the SARS-CoV-2 Mpro necessary for the enzymatic activity. Through the molecular dynamic simulation and binding free energy calculation, the interaction between the MAptapro-IR1 aptamer and the SARS-CoV-2 Mpro enzyme resulted in the strongest and the highest stable complex; therefore, the ssRNA MAptapro-IR1 aptamer was selected as the best potential candidate for the inhibition of SARS-CoV-2 Mpro and a perspective therapeutic drug for the COVID-19 disease.  相似文献   
69.
核酸适配体是通过指数富集配体系统进化技术经体外筛选得到的可以特异性地识别目标物的一段短的单链寡核苷酸序列。与抗体相比,适配体具有性质稳定、易化学合成、易化学修饰、分子量小和目标分子广泛等优点,目前在生物传感器、毛细管电泳、物质分离富集以及医疗诊断等领域得到了广泛应用。本文重点介绍了核酸适配体在固相萃取、磁分离、亲和色谱及微流控分离分析等样品前处理技术中的应用,并对其应用现状和发展前景进行了综述。  相似文献   
70.
Aptamers are small non-coding RNAs capable of recognizing, with high specificity and affinity, a wide variety of molecules in a manner that resembles antibodies. This class of nucleic acids is the resulting product of applying a well-established screening method known as SELEX. First developed in 1990, the SELEX process has become a powerful tool to select structured oligonucleotides for the recognition of targets, starting with small molecules, going through protein complexes until whole cells. SELEX has also evolved along with new technologies positioning itself as an alternative in the design of a new class of therapeutic agents in modern molecular medicine. This review is an historical follow-up of SELEX method over the two decades since its first appearance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号