首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60794篇
  免费   8979篇
  国内免费   5198篇
电工技术   7656篇
技术理论   2篇
综合类   6075篇
化学工业   5685篇
金属工艺   2145篇
机械仪表   6000篇
建筑科学   2893篇
矿业工程   2035篇
能源动力   3068篇
轻工业   3585篇
水利工程   1612篇
石油天然气   2751篇
武器工业   838篇
无线电   4525篇
一般工业技术   5671篇
冶金工业   1731篇
原子能技术   298篇
自动化技术   18401篇
  2024年   375篇
  2023年   1435篇
  2022年   2547篇
  2021年   2691篇
  2020年   2919篇
  2019年   2541篇
  2018年   2259篇
  2017年   2737篇
  2016年   3040篇
  2015年   3370篇
  2014年   4744篇
  2013年   4600篇
  2012年   5220篇
  2011年   5251篇
  2010年   3614篇
  2009年   3846篇
  2008年   3367篇
  2007年   3803篇
  2006年   3143篇
  2005年   2519篇
  2004年   2058篇
  2003年   1637篇
  2002年   1368篇
  2001年   1121篇
  2000年   940篇
  1999年   639篇
  1998年   611篇
  1997年   519篇
  1996年   410篇
  1995年   349篇
  1994年   274篇
  1993年   210篇
  1992年   176篇
  1991年   143篇
  1990年   123篇
  1989年   101篇
  1988年   65篇
  1987年   25篇
  1986年   29篇
  1985年   16篇
  1984年   17篇
  1983年   19篇
  1982年   19篇
  1981年   11篇
  1980年   16篇
  1979年   14篇
  1978年   6篇
  1977年   5篇
  1959年   4篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
In this work, the effects of solid/solvent ratio (0.10–0.25?g/ml), extraction time (3–8?h), and solvent type (n-hexane, ethyl acetate, and acetone) together with their shared interactions on Kariya seed oil (KSO) yield were investigated. The oil extraction process was modeled via response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) while the optimization of the three input variables essential to the oil extraction process was carried out by genetic algorithm (GA) and RSM methods. The low mean relative percent deviation (MRPD) of 0.94–4.69% and high coefficient of determination (R2) > 0.98 for the models developed demonstrate that they describe the solvent extraction process with high accuracy in this order: ANFIS, ANN, and RSM. The best operating condition (solid/solvent ratio of 0.1?g/ml, extraction time of 8?h, and acetone as solvent of extraction) that gave the highest KSO yield (32.52?wt.%) was obtained using GA-ANFIS and GA-ANN. Solvent extraction efficiency evaluation showed that ethyl acetate, n-hexane, and acetone gave maximum experimental oil yields of 19.20?±?0.28, 25.11?±?0.01, and 32.33?±?0.04?wt.%, respectively. Properties of the KSO varied based on the type of solvent used. The results of this work showed that KSO could function as raw material in both food and chemical industries.  相似文献   
42.
Due to the law of reflection, a concave reflecting surface/mirror causes the incident light rays to converge and a convex surface/mirror causes the light rays to reflect away so that they all appear to be diverging. These converging and diverging behaviors cause that the curved mirrors show different image types depending on the distance between the object and the mirror. We model such optical phenomena metaphorically into the searching process of numerical optimization by a new algorithm called optics inspired optimization (OIO). OIO treats the surface of the numerical function to be optimized as a reflecting surface in which each peak is assumed to reflect as a convex mirror and each valley to reflect as a concave one. Each individual is assumed to be an artificial object (or light point) that its artificially glittered ray is reflected back by the function surface, given that the surface is convex or concave, and the artificial image is formed (a candidate solution is generated within the search domain) based on the mirror equations adopted from physics of optics. Besides OIO, we introduce different variants of it, called ROIO (Rotation based OIO), and COIO (Convex combination based OIO) algorithms and conduct an extensive computational effort to find out the merit of the new algorithms. Our comparisons on benchmark test functions and a real world engineering design application (i.e., optimization of a centrifuge pump) demonstrate that the new algorithms are efficient and compete better than or similar to most of state of the art optimization algorithms with the advantage of accepting few input parameters.  相似文献   
43.
We study a two-stage stochastic and nonlinear optimization model for operating a power grid exposed to a natural disaster. Although this approach can be generalized to any natural hazard of continuous (and not instantaneous) nature, our focus is on wildfires. We assume that an approaching wildfire impacts the power grid by reducing the transmission capacity of its overhead lines. At the time when proactive decisions have to be taken, the severity of the wildfire is not known. This introduces uncertainty. In this paper, we extend previous work by more realistically capturing this uncertainty and by strengthening the mathematical programming formulation through standard reformulation techniques. With these reformulation techniques, the resulting two-stage, convex mixed-integer quadratically constrained programming formulation can be efficiently solved using commercial quadratic programming solvers as demonstrated on a case study on a modified version of the IEEE 123-bus test system with 100 scenarios. We also quantify the uncertainties through a second case study using the following three standard metrics of two-stage stochastic optimization: the expected value of perfect information, the expected result of using the expected value solution and the value of the stochastic solution.  相似文献   
44.
45.
Fault detection, isolation and optimal control have long been applied to industry. These techniques have proven various successful theoretical results and industrial applications. Fault diagnosis is considered as the merge of fault detection (that indicates if there is a fault) and fault isolation (that determines where the fault is), and it has important effects on the operation of complex dynamical systems specific to modern industry applications such as industrial electronics, business management systems, energy, and public sectors. Since the resources are always limited in real-world industrial applications, the solutions to optimally use them under various constraints are of high actuality. In this context, the optimal tuning of linear and nonlinear controllers is a systematic way to meet the performance specifications expressed as optimization problems that target the minimization of integral- or sum-type objective functions, where the tuning parameters of the controllers are the vector variables of the objective functions. The nature-inspired optimization algorithms give efficient solutions to such optimization problems. This paper presents an overview on recent developments in machine learning, data mining and evolving soft computing techniques for fault diagnosis and on nature-inspired optimal control. The generic theory is discussed along with illustrative industrial process applications that include a real liquid level control application, wind turbines and a nonlinear servo system. New research challenges with strong industrial impact are highlighted.  相似文献   
46.
The process of electrodeposition can be described in terms of a reaction-diffusion partial differential equation (PDE) system that models the dynamics of the morphology profile and the chemical composition. Here we fit such a model to the different patterns present in a range of electrodeposited and electrochemically modified alloys using PDE constrained optimization. Experiments with simulated data show how the parameter space of the model can be divided into zones corresponding to the different physical patterns by examining the structure of an appropriate cost function. We then use real data to demonstrate how numerical optimization of the cost function can allow the model to fit the rich variety of patterns arising in experiments. The computational technique developed provides a potential tool for tuning experimental parameters to produce desired patterns.  相似文献   
47.
Radiation therapy is a technology-driven cancer treatment modality that has experienced significant advances over the last decades, due to multidisciplinary contributions that include engineering and computing. Recent technological developments allow the use of noncoplanar volumetric modulated arc therapy (VMAT), one of the most recent photon treatment techniques, in clinical practice. In this work, an automated noncoplanar arc trajectory optimization framework designed in two modular phases is presented. First, a noncoplanar beam angle optimization algorithm is used to obtain a set of noncoplanar irradiation directions. Then, anchored in these directions, an optimization strategy is proposed to compute an optimal arc trajectory. The computational experiments considered a pool of twelve difficult head-and-neck tumor cases. It was possible to observe that, for some of these cases, the optimized noncoplanar arc trajectories led to significant treatment planning quality improvements, when compared with coplanar VMAT treatment plans. Although these experiments were done in a research environment treatment planning software (matRad), the conclusions can be of interest for a clinical setting: automated procedures can simplify the current treatment workflow, produce high-quality treatment plans, making better use of human resources and allowing for unbiased comparisons between different treatment techniques.  相似文献   
48.
Liu  Song  Cui  Yuan-Zhen  Zou  Nian-Jun  Zhu  Wen-Hao  Zhang  Dong  Wu  Wei-Guo 《计算机科学技术学报》2019,34(2):456-475
Journal of Computer Science and Technology - DOACROSS loops are significant parts in many important scientific and engineering applications, which are generally exploited pipeline/wave-front...  相似文献   
49.
Although topology optimization is established for linear static problems, more effort is required for solving nonlinear plastic problems. A new topology optimization approach with equivalent static loads (ESLs) is suggested to find the optimum topologies and locations of plastic hinges of thin-walled crash boxes by considering crash-induced deformation, the main crash energy-absorbing mechanism. Together with finite element method crashworthiness analyses, considering all nonlinearities with rate-dependent plasticity, the method was developed using an appropriate time-incremental scheme of ESLs without removing any high values of loads. Analyses show that the crash boxes with optimum topologies have energy-absorbing capabilities equivalent to the original structure. The proposed method is evaluated for two crashes: a crash box at low speed and a double cell subjected to high-speed collision. The results indicate that this method captures nonlinear crushing behaviours and accurate locations of plastic hinges where, if proper reinforcements are made, energy absorption can be enhanced.  相似文献   
50.
摘要:针对烧结环冷机余热回收利用率不高的难题,采用分析法建立了评价某钢铁厂烧结环冷机余热回收系统运行效率的效率模型。基于多孔介质模型、局部非热平衡方程、真实气体SRK方程建立环冷机内气固两相换热模型。通过CFD仿真模拟,探究料层高度、循环风机输入烟气温度、烧结矿底部入口风速三项可控环冷机运行工艺参数对系统效率的影响规律。结果表明,料层厚度在1~1.5 m区间每增加0.1 m,效率增加0.8%~1.1%;循环风温在100~140℃之间每增加10℃,效率增加1.4%~1.5%;烧结矿底部入口风速在0.9~1.9 m/s之间每增加0.1 m/s,效率降低0.18%~0.24%。在此基础上,基于工业运行数据建立效率正交试验优化模型,提高了该余热回收系统3.42%的效率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号